7. Master Equations and Jump Processes

It is very often the case that in systems involving numbers of particles, or individual
objects (animals, bacteria, etc) that a description in terms of a jump process can be
very plausibly made. In such cases we find, as first mentioned in Sect. 1.1, that in an
appropriate limit macroscopic deterministic laws of motion arise, about which the
random nature of the process generates a fluctuating part. However the determinis-
tic motion and the fluctuations arise directly out of the same description in terms
of individual jumps, or transitions. In this respect, a description in terms of a jump
process (and its corresponding master equation) is very satisfactory.

In contrast, we could model such a system approximately in terms of stochastic
differential equations, in which the deterministic motion and the fluctuations have a
completely independent origin. In such a model this independent description of
fluctuations and deterministic motion is an embarrassment, and fluctuation dissi-
pation arguments are necessary to obtain some information about the fluctuations.
In this respect the master equation approach is a much more complete description.

However the existence of the macroscopic deterministic laws is a very significant
result, and we will show in this chapter that there is often a limit in which the
solution of a master equation can be approximated asymptotically (in terms of a
large parameter £ describing the system size) by a deterministic part (which is the
solution of a deterministic differential equation), plus a fluctuating part, describa-
ble by a stochastic differential equation, whose coefficients are given by the original
master equation. Such asymptotic expansions have already been noted in Sect.
3.8.3, when we dealt with the Poisson process, a very simple jump process, and
are dealt with in detail in Sect. 7.2.

The result of these expansions is the development of rather simple rules for
writing Fokker-Planck equations equivalent (in an asymptotic approximation) to
master equations, and in fact it is often in practice quite simple to write down the
appropriate approximate Fokker-Planck equation without ever formulating the
master equation itself. There are several different ways of formulating the first-
order approximate Fokker-Planck equation, all of which are equivalent. However,
there is as yet only one way of systematically expanding in powers of 27!, and that
is the system size expansion of van Kampen.

The chapter concludes with an outline of the Poisson representation, a method
devised by the author and co-workers, which, for a class of master equations,
sets up a Fokker-Planck equation exactly equivalent to the master equation. In this
special case, the system size expansion arises as a small noise expansion of the
Poisson representation Fokker-Planck equation.
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7.1 Birth-Death Master Equations— One Variable

The one dimensional prototype of all birth-death systems consists of a population
of individuals X in which the number that can occur is called x, which is a non-
negative integer. We are led to consider the conditional probability P(x, ¢|x', t") and
its corresponding master equation. The concept of birth and death is usually that
only a finite number of X are created (born) or destroyed (die) in a given event. The
simplest case is when the X are born or die one at a time, with a time independent
probability so that the transition probabilities W(x|x’, ) can be written

W(x|x, 1) = 1 (x')0x o1 + 17 (X )0 nros - (7.1.1)
Thus there are two processes,

x—x+1: t*(x) = transition probability per unit time. (7.1.2)

x—x—1l: t~(x) = transition probability per unit time. (7.1.3)
The general master equation (3.5.5) then takes the form

a.P(x, t|x, ")y =1t*(x — DP(x — L, t|x', t") + t=(x + DP(x + 1, t|x', 1)
— [t*(x) + = (x)]P(x, t|x", t). (7.1.4)

There are no general methods of golving this equation, except in the time-inde-
pendent situation.

7.1.1 Stationary Solutions
We can write the equation for the stationary solution P,(x) as

0=J(x+1)— J(x) (7.1.5)
with

J(x) = t7(x)Py(x) — t*(x — DP,(x—1). (7.1.6)

We now take note of the fact that x is a non-negative integer; we cannot have a
negative number of individuals. This requires

(i) t=(0) = 0: no probability of an individual dying if there are
none present; (7.1.7)
(ii) P(x,t|x, 1) =0 forx<Oorx <O. (7.1.8)

This means that

J(0) = t7(0)P,(0) — t*(—=1)P(—1) = 0. (7.1.9)

We now sum (7.1.5) so
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0=SUG+1)—J@]=Jx) —JO). (7.1.10)
Hence,
J(x)=0 (7.1.11)
and thus
Py =SSP — 1) (7.1.12)
so that
I x (*(z — 1)
P(x)= .u,avm_ e (7.1.13)

a) Detailed Balance Interpretation

The condition J(x) = 0 can be viewed as a detailed balance requirement, in which x
is an even variable. For, it is clear that it is a form of the detailed balance condition
(5.3.74), which takes the form here of

P(x, t|x', O)P,(x") = P(x', 7| x, 0)P(x), (7.1.14)

Setting x’ = x + 1 and taking the limit r — 0, and noting that by definition
(3.4.1),

W(x|x',t) =1lim P(x, t + t|x, t)/z, (7.1.15)

=0
the necessity of this condition is easily proved.

b) Rate Equations
We notice that the mean of x satisfies

3x(1)) = 9, M xP(x, t| X, ') (1.1.16)
- M. At (x —DP(x — 1, 1| %, t') — t*(X)P(x, t| X', t')]
+ Wo Xt~ + DP(x + 1, 1] ¥, ) — t=()P(x, t]x, 1] (7.1.17)
= Mu [(x + Det(x) — xt*(x) + (x — Dt~ (x)
— xt=())P(x, 11X, 1), (7.1.18)
ie.,
MMQSV = @) — ¢ x@)) . (7.1.19)
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The corresponding deterministic equation is that which would be obtained by
neglecting fluctuations, i.e.,

M|”.. =t*x) — t7(x). (7.1.20)

Notice that.a stationary state occurs deterministically when

tH(x) = 1(x). (7.1.21)
Corresponding to this, notice that the maximum value of P,(x) occurs when

P)/P(x—1) =1, (7.1.22)
which from (7.1.12) corresponds to

tx—1=17(x). (7.1.23)

Since the variable x takes on only integral values, for sufficiently large x (7.1.21) and
(7.1.23) are essentially the same.

Thus, the modal value of x, which corresponds to (7.1.23), is the stationary
stochastic analogue of the deterministic steady state which corresponds to (7.1.21).

7.1.2 Example: Chemical Wmunno_w Xe—4

. K ; I - _
We treat the case of a reaction X == A in which it is assumed that 4 is a fixed

k2
concentration. Thus, we assume
tt(x) = kya (7.1.24)
t=(x) = kx (7.1.25)

so that the Master equation takes the simple form [in which we abbreviate
P(x, t|x', t") to P(x, t)]

0,P(x,1) = kpaP(x — 1, 1) + ky(x + )P(x + 1, 1) — (kyx + kya)P(x, 1). (7.1.26)

a) Generating Function
To solve the equation, we introduce the generating function (c.f. Sects.1.4.1, 3.8.2)

G(s, t) = 3 s*P(x, 1) (7.1.27)

x=0

so that

0,G(s, 1) = kya(s — 1)G(s, 1) — k(s — 1)3,G(s, 1) . (7.1.28)




7.1 Birth-Death Master Equations — One Variable 239

If we substitute

(s, t) = G(s, 1) exp (—kas/k)) , (7.1.29)
(7.1.28) becomes

3.8(s, 1) = — ky(s — 1. (s, 1) . (7.1.30)
The further substitution s — 1 = e*,

#(s, 1) = y(z, 1)
gives

dw(z, t) + ko.y(z, 1) =0 (7.1.31
whose solution is an arbitrary function of k,t — z. For convenience, write this a:

w(z, 1) = Flexp (—k,t + 2)] e~*2*k1
Fl(s — 1)e~*11] g~*2a/k1

S0

G(s, 1) =F[(s— e ] exp [(s — Dkaa/k,] . (7.1.5.

Normalisation requires G(1, ) = 1, and hence
FO)=1. (7.1.33)

b) Conditional Probability
The initial condition determines F; this is (setting ' = 0)

P(x,0|N, 0) = 6, » (7.1.34)

which means

G(s,0) = sV = F(s — 1) exp [(s — Dkqafk,] (7.1.35)
so that
_‘ﬁuﬁ_ _ =
G(s, 1) = exp Tn (= 11— ki: F (s — 1)ean. (7.1.36)
1

This can now be expanded in a power series in s giving

m@.“_z.ovln%T T, A Lmﬂzlaiﬁl% »_v

% A_ — 01&.&2+nlunnlwn2 .

(7.1.37)
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This very complicated answer is a complete solution to the problem but is of very
little practical use. It is better to work either directly from (7.1.36), the generating
function, or from the equations for mean values.

From the generating function we can compute

0 =0,66s=1,1) =521 — ety 4 N et (7.1.38)
C()x(t) — 1) = 02G(s = 1, 1) = (x(1))* — N e~k (7.1.39)
varls() = (Ve + 21— emn. (7.1.40)

¢) Moment Equations
From the differential equation (7.1.28) we have

0,[07G(s, )] = {nlkyad;™" — k\37] + (s — Dlkaads — k37" G(s, 1) . (7.1.41)
Setting s = I and using
0:G(s, 1) |1 = <X(1)D» (7.1.42)

we find

L x(eyy, = nlkaa(aey =3 — kG0, (7.1.43)

and these equations form a closed hierarchy. Naturally, the mean and variance solu-
tions correspond to (7.1.38, 40).

d) Autocorrelation Function and Stationary Distribution
As t — oo for any F, we find from (7.1.32, 33)

G(s, t — o0) = exp [ (s — Dkaa/k,] (7.1.44)
corresponding to the Poissonian solution:
P(x) = exp (— kaalk,) (kaalk,)*[x!. (7.1.45)

Since the equation of time evolution for {x(t)) is linear, we can apply the methods
of Sect.3.7.4, namely, the regression theorem, which states that the stationary
autocorrelation function has the same time dependence as the mean, and its value
at t = 0 is the stationary variance. Hence,

x(1)), = kyalk, (7.1.46)
var{x(t)}, = kaalk, (7.1.47)
{x(1), x(0)), = e *kalk, . (7.1.48)

The Poissonian stationary solution also follows from (7.1.13) by direct substitution.
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e) Poissonian Time-Dependent Solutions
A very interesting property of this equation is the existence of Poissonian time-
dependent solutions. For if we choose

e %ogy
x!

P(x,0) = ) (7.1.49)

then

G(s, 0) = exp [(s — Dao) (7.1.50)
and from (7.1.32) we find

G(s, t) = exp (s — Dlage™ " +(kqafk,)(1 —e 5] (7.1.51)
corresponding to

nlnn: Q:wa

P(x, 1) ==— (7.1.52)
with

a(t) = ape ™" + (kya/ky) (1 —e~ 5"y . (7.1.53)
Here a(t) is seen to be the solution of the deterministic equation

m.w“wpnl kyx (7.1.54)
with the initial condition x(0) = a,. (7.1.55)

This result can be generalised to many variables and forms the rationale for the
Poisson representation which will be developed in Sect. 7.7. The existence of Pois-
sonian propagating solutions is a consequence of the linearity of the system.

7.1.3 A Chemical Bistable System

We consider the system

A+ P«W&kuk . (7.1.56)
2
L (7.1.57)
kg

which has been studied by many authors [7.1]. The concentration of A is held fixed
s0 that we have
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t*(x) =k Ax(x — 1) + kA

(7.1.58)
17(x) = kyx(x — 1) (x — 2) + kex.
The corresponding deterministic equation is, of course,
M|.w =1*(x) — t7(x)
(7.1.59)

= —kx* 4+ ki Ax* — kox + k3A ,

where it is assumed that x > 1 so that we set x(x — 1) (x — 2) = x?, etc. The solu-
tion of this equation, with the initial condition x(0) = x,, is given by

HH IM_ v au-auAk I».N v »_la Ak | kuvnu-:
Xo — X Xo — X3 Xg — X3

= exp [—ha(x; — x)(x2 — X3)(x3 — x))1] . (7.1.60)
Here, x,, x,, x; are roots of
kox® — kyAx® + kyx — x3;4 =0 (7.1.61)
with x; = x, = x,.

Clearly these roots are the stationary values of the solutions x(f) of (7.1.59).
From (7.1.59) we see that

. d

X% vawvo
dx

X3 > X > X “va_lﬂﬂc (7.1.62)
dx

X3>X>Xxys ——>0
dt
dx

X > X ”vm.,\,c.

Thus, in the region x < x,, x(t) will be attracted to x, and in the region x > x,,
x(t) will be attracted to x;. The solution x(f) = x, will be unstable to small pertur-
bations. This yields a system with two deterministically stable stationary states.

a) Stochastic Stationary Solution
From (7.1.13)

— = Blz—-1)(z—-2)+P
POY=PO Il = —2) + Ral”

(7.1.63)

where
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B =k, Alk,
R = ki/fk, (7.1.64)
P = ky/k, .

Notice that if P = R, the solution (7.1.63) is Poissonian with mean B. In this case,
we have a stationary state in which reactions (7.1.56, 57) are simultaneously in
balance. This is chemical equilibrium, in which, as we will show later, there is always
a Poissonian solution (Sects. 7.5.1 and 7.7b). The maxima of (7.1.63) occur,
according to (7.1.21), when

B=x{(x—1)(x—2) + RYIP + x(x — 1)]. (7.1.65)

The function x = x(B), found by inverting (7.1.65), gives the maxima (or minima)
corresponding to that value of B for a given P and R.
There are the two asymptotic forms:

x(B) ~ B large B

(7.1.66)
x(B) ~ PB/R small B
If R > 9P, we can show that the slope of x(B) becomes negative for some range
of x > 0 and thus we get three solutions for a given B, as shown in Fig. 7.1. The
transition from one straight line to the other gives the kink that can be seen.
Notice also that for the choice of parameters shown, the bimodal shape is signi-
ficant over a very small range of B. This range is very much narrower than the
range over which P(x) is two peaked, since the ratio of the heights of the peaks
cun be very high.

2000

X(B)
1000

1 201 30 RIP
Fig. 7.1. Plot of x(B) against B,
as given by the solution of (7.1.65)

1 for various values of R/P, and
1000 2000 P = 10,000
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A more precise result can be given. Suppose the volume ¥ of the system be-
comes very large and the concentration y of X given by

y=xv,

is constant. Clearly the transition probabilities must scale like V, since the rate of
production of X will scale like x = yV.
Hence,

kA~ 1V
kA ~V (7.1.67)
Mﬂu e —____ﬁ\N
ke~ 1
which means that
B~V
R~ V? (7.1.68)
P~ V2,

We then write
B= BV 3
R = Rv?
P = Py?

so that (7.1.65) becomes
B=y»* + BRI + P).
And if y, and y, are two values of y,

pile

log [P(y2)/ P{(y)] = 2. {log BV + log (* + PV?)

=y Vv

— log [2(z* + RV?)) (7.1.69)

and we now approximate by an integral

~ _\H dy Tom HEW g .

Y+ R)
Hence,
P(ys) _ 5 B + P)
Fog = o[ Tree (6 m) ) (7.1.70)
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and as ¥V — oo, depending on the sign of the integral, this ratio becomes either
zero or infinity. Thus, in a large volume limit, the two peaks, unless precisely equal
in height, become increasingly unequal and only one survives.

The variance of the distribution can be obtained by a simple trick. Notice from
(7.1.63) that P,(x) can be written

P(x) = B*G(x), (7.1.71)

where G(x) is a function defined through (7.1.63). Then,

(kY = E imé& E méo&-_

and - \ (7.1.72)
B (X = (++41) — (e

so that
GaE ) = mml.wﬁv. 7.1.73)

From this we note that as ¥ — oo,
var { y} }\F_\I..o. (7.1.74)

So a deterministic limit is approached. Further, notice that if {x) is proportional
to B, the variance is equal to the mean, in fact, we find on the two branches (7.1.66),

{x(B)) = var{x(B)} = B large B
{x(B)) = var{x(B)} = PB/R small B

which means that the distributions are roughly Poissonian on these limiting
branches.

The stochastic mean is not, in fact, given exactly by the peak values but ap-
proximates it very well. Of course, for any B there is one well defined (x(B)), not
three values. Numerical computations show that the mean closely follows the
lower branch and then suddenly makes a transition at B, to the upper branch.
This will be the value at which the two maxima have equal height and can, in
principle, be determined from (7.1.70).

b) Time-Dependent Behaviour

This is impossible to deduce exactly. Almost all approximation methods depend
on the large volume limit, whose properties in a stationary situation have just been
noted and which will be dealt with systematically in the next section.
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7.2 Approximation of Master Equations by Fokker-Planck
Equations

The existence of the parameter V in terms of which well-defined scaling laws are
valid leads to the concept of system size expansions, first put on a systematic basis
by van Kampen [7.2). There is a confused history attached to this, which arises out of
repeated attempts to find a limiting form of the Master equation in which a Fokker-
Planck equation arises. However, the fundamental result is that a diffusion proces-
can always be approximated by a jump process, not the reverse.

7.2.1 Jump Process Approximation of a Diffusion Process

The prototype result is that found for the random walk in Sect.3.8.2, that in the
limit of infinitely small jump size, the Master equation becomes a Fokker-Planck
equation. Clearly the jumps must become more probable and smaller, and this can
be summarised by a scaling assumption: that there is a parameter J, such that the
average step size and the variance of the step size are proportional to J, and such
that the jump probabilities increase as é becomes small.

We assume that the jump probabilities can be written

Wix'|x) = @ ﬁ.hwl.wh% x)o, a1
¥
where
[dy®(y,x) =Q (7.2.2)
and
[dyy®(y,x)=0. (7.2.3)

This means that
ag(x) = [ dx'Ws(x'| x) = Q/d
a(¥) = [ dY'(¥ — DWax'|x) = A(X)Q (1.2.4)
ax(x) = [ dx'(x' — xPWs(x'|x) = [ dy y*&(y, x) .

We further assume that @(y, x) vanishes sufficiently rapidly as y — co, so that

u

_maﬁgbn _mi Llu e? i noaﬂ&#k. Q.m.a
-0 y=eo |\ X — X

The conditions (7.2.4, 5) are very similar to those in Sect.3.4, namely, (3.4.1, 4, 5)

and by taking a twice differentiable function f(z), one can carry out much the same

procedure as that used in Sect. 3.4 to show that




fim Am%vv = Aa@wm + 5 a(2) WWO (71.2.6)

d-0
implying that in the limit § — 0, the Master equation

aP(x)
ot

= [ dx'[W(x|x)P(x") — W(x'|x)P(x)] (7.2.7)

becomes the FPE

P
PR _ 2 0Pt + 4

| <Y

2
2 @(DP() . (7.2.8)

i=3]

Thus, given (7.2.8), one can always construct a Master equation depending on a
parameter d which approximates it as closely as desired. Such a Master equation
will have transition probabilities which satisfy the criteria of (7.2.4). If they do not
satisfy these criteria, then this approximation is not possible. Some examples are
appropriate.

a) Random Walk (Sect.3.8.2)

Let x = nl, then
W(x|x") = d(0xr,xt + Our.xit) - . (.29
Then
ao(x) = 2d
a(x) =0 (7.2.10)
ay(x) = 2I%d ;
let
d=p (7.2.11)
and
D =1Pd. (7.2.12)

Then all requirements are met, so the limiting equation is

P 3P
5 =D (7.2.13)

as found in Sect.3.8.2.

b) Poisson Process (Sect.3.8.3)
Here, letting x = nl,

:\AH_HJ = h.%u.k___t_ AQ‘N.—L.V
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and
ay(x)=d
a,(x) = Id (7.2.15)
a(x) = I’d.

There is no way of parametrising / and d in terms of J such that / — 0 and both
a,(x) and a,(x) are finite. In this case, there is no Fokker-Planck limit.

¢) General Approximation of Diffusion Process by a Birth-Death Master Equation
Suppose we have a Master equation such that

AQx) , B(x) 4., 30

W' |2) = (53 + 532) bwress + (= 53 + 532) bt (7.2.16)

so that for sufficiently small 8, Wjs(x"|x) is positive and we assume that this is
uniformly possible over the range of x of interest. The process then takes place on a

range of x composed of integral multiples of &. This is not of the form of (7.2.1)
but, nevertheless, in the limit § — 0 gives a FPE. For

ao(x) = B(x)/6* (7.2.17a)

(%) = A(x) (7.2.17b)

ay(x) = B(x) . (7.2.17¢)
and

lim Wyx'|x) =0 for  x'#x. (7.2.17d)

Here, however, ay(x) diverges like 1/d%, rather than like 1/§ as in (7.2.4) and the
picture of a jump taking place according to a smooth distribution is no longer valid.
The proof carries through, however, since the behaviour of a,(x) is irrelevant and
the limiting FPE is

— — 2 4Pe) + 1 2 ByP) (1.2.18)
T 9x 2 ax? : =

dP(x)
ot

In this form, we see that we have a possible tool for simulating a diffusion process
by an approximating birth-death process. The method fails if B(x) = 0 anywhere
in the range of x, since this leads to negative Ws(x'|x).  Notice that the stationary
solution of the Master equation in this case is

P(x)

»mkﬁl&._.mﬁnl&
PO 1L ﬁ —0dA(z) + B(z) g

=§

_ —d8A(0) + B(0)] = [1 + dA(2)/B(z)
- m.a; SA(x) + EL 11 T s %EEL

r=0

(7.2.19)
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so that, for small enough &

log P.(x) — const — log B(x) + 3 26 A(2)/B(2) , (7.2.20)

=0
G

P, (x) — %\w exp [2 Q?N A(2)/B(2)] (7.2.21)

as required. The limit is clearly uniform in any finite interval of x provided A(x)/B(x)
is bounded there.

7.2.2 The Kramers-Moyal Expansion

A simple but nonrigorous derivation was given by Kramers [7.3] and considerably
improved by Moyal [7.4]. It was implicitly used by Einstein [7.5] as explained in
Sect. 1.2.1.

In the Master equation (7.2.7), we substitute x’ by defining

y=x—x" in the first term, and
y=x'—x in the second term.
Defining
Wy, x) = Wix + ylx), (7.2.22)

the master equation becomes

mmmb = [dy [t(y, x — Y)P(x — y) — 1(p, x)P(x)] . (7.2.23)

We now expand in power series,

=3 Ta_\ r %H,, [1(y, X)P(x)] (7.2.24)

-5V e, (1.225)
where

a,(x) = [ dx'(x' — x)"W(x'|x) = [ dy y" 1(y, x) . (7.2.26)

By terminating the series (7.2.25) at the second term, we obtain the Fokker-Planck
equation (7.2.8).

In introducing the system size expansion, van Kampen criticised this “proof”,
because there is no consideration of what small parameter is being considered.
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Nevertheless, this procedure enjoyed wide popularity—mainly because of the
convenience and simplicity of the result. However, the demonstration in Sect.7.2.1
shows that there are limits to its validity. Indeed, if we assume that W(x'|x) has
the form(7.2.1), we find that

aifx) = o+! ._‘&. y'P(y, x) . (7.2.27)

So that as § — 0, terms higher than the second in the expansion (7.2.25) (the
Kramers-Moyal expansion) do vanish. And indeed in his presentation, Moyal
[7.4] did require conditions equivalent to (7.2.4, 5).

7.2.3 Van Kampen’s System Size Expansion [7.2]

Birth-death master equations provide good examples of cases where the Kramers-
Moyal expansion fails, the simplest being the Poisson process mentioned in Sect.
1.2.1.

In all of these, the size of the jump is 41 or some small integer, whereas typical
sizes of the variable may be large, e.g., the number of molecules or the position
of the random walker on a long lattice.

In such cases, we can introduce a system size parameter £ such that the transi-
tion probabilities can be written in terms of the intensive variables x/2 etc. For
example, in the reaction of Sect.7.1.3, 2 was the volume ¥ and x/2 the concentra-
tion. Let us use van Kampen’s notation:

a = extensive variable (number ¥of molecules, etc oc Q)

x = a/f intensive variable (concentration of molecules).
The limit of interest is large 2 at fixed x. This corresponds to the approach to a
macroscopic system. We can rewrite the transition probability as

W(ala') = W(a'; Aa)

Aa=a—d. (7.2.28)
The essential point is that the size of the jump is expressed in terms of the extensive
quantity Aa, but the dependence on a' is better expressed in terms of the intensive

variable x.
Thus, we assume that we can write

W(d'; Aa) = Qu m‘mw Dnv. (7.2.29)

If this is the case, we can now make an expansion. We choose a new variable z so
that

a= Q) + 'z, (7.2.30)

where ¢(¢) is a function to be determined. It will now be the case that the a,(a) are
proportional to Q: we will write
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a,(a) = Qa,(x) . (7.2.31)

We now take the Kramers-Moyal expansion (7.2.25) and change the variable to
get

aP(z, t)

oo 1-nj2
G0 _ guny Sm.un H_ &0

=3

n=1 n!

x AI %Nv "a,l6(t) + Q22)P(z, 1). (7.2.32)

The terms of order 2''? on either side will cancel if (r) obeys
(1) = a,[4(1)] ,H (7.2.33)

which is the deterministic equation expected. We expand &,[4(t) + Q27'/%z] in powers
of V2, rearrange and find

oP(z,t) W Q- m-2)12 W m!

o = m Anm—a®

& [4(0)] A Iu "mP(z, 1) (1.2.34)

Taking the large Q limit, only the m = 2 term survives giving

aP(z, 1)

N TR m:&gm zP(z, 1) + ié%: % £y (1.2.35)

a) Comparison with Kramers-Moyal Result
The Kramers-Moyal Fokker-Planck equation, obtained by terminating (7.2.25)
after two terms, is

8@ _ _ 2 (o @pi@) + 5 2 la(@P(a) (1236

and changing variables to x = a/Q, we get

220 — 2 (3, ()P + 555 2 (@ 00PCON - (7.2.37)

We can now use the small noise theory of Sect. 6.3, with

_1
=1 (1.2.38)

and we find that substituting
z=0Q"[x — ¢(1)], (7.2.39)

the lowest-order FPE for z is exactly the same as the lowest-order term in van
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Kampen’s method (7.2.35). This means that if we are only interested in the lowest
order, we may use the Kramers-Moyal Fokker-Planck equation which may be
easier to handle than van Kampen’s method. The results will differ, but to lowest
order in 7'/ will agree, and each will only be valid to this order.

Thus, if a FPE has been obtained from a Master equation, its validity depends
on the kind of limiting process used to derive it. If it has been derived in a limit
d — 0 of the kind used in Sect.7.2.1, then it can be taken seriously and the full
nonlinear dependence of a,(a) and a,(a) on a can be exploited.

On the other hand, if it arises as the result of an 2 expansion like that in Sect.
7.2.3, only the small noise approximation has any validity. There is no point in
considering anything more than the linearisation, (7.2.35), about the deterministic
solution. The solution of this equation is given in terms of the corresponding
stochastic differential equation

dz = @Y1z dt + ~/E[g0)) A1) - (7.2.40)

by the results of Sect. 4.4.7 (4.4.69), or Sect. 4.4.9 (4.4.83).
b) Example: Chemical Reaction X — 4
From Sect. 7.1.2, we have
W(x|x) = 0y pri1ka@ + Oy ki X' (7.2.41)
The assumption is

—aV
="y (1.2.42)
x=x:V,

where V is the volume of the system. This means that we assume the total amounts
of A and X to be proportional to ¥ (a reasonable assumption) and that the rates of
production and decay of X are proportional to a and x, respectively.

Thus,

W(xt; Ax) = V[k,a0045.1 + KiX604xs-1] (7.2.43)

which is in the form of (7.2.29), with 2 — V, a — x, etc.
Thus,

a(x) = 3 (x" — x)W(x' | x) = k,a — k\x = Vikaay — k1 x,)
(X — xPW(x'| x) = kya + kix = Vika, + kixg) .

(7.2.44)

ay(x)
The deterministic equation is

¢'(t) = [kaa, — kig(1)] (7.2.45)

whose solutions is

#(1) = g0)e—*r + 5 (1 — k). (7.2.46)
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The Fokker-Planck equation is

oP(z) 1 o*
at =k oz umANv + 2 922

[kaas + Kyg(2)1P(2) - (7.2.47)

From (4.4.84, 85) we can compute that
() = z(0)e™ . (7.2.48)

Usually, one would assume z(0) = 0, since the initial condition can be fully dealt
with by the initial condition on ¢. Assuming z(0) is zero, we find

variz(f)} = ﬁ 2 &sm-i (1 — e-*19) (7.2.49)
so that
GH0)y = V(t) = V(O)e*r + 2 (1 — e) (7.2.50)

var {x(t)} = ¥ var {z(1)} uﬁ i &@Wi (1 — k). (7.2.51)

ky

With the identification ¥¢(0) = N, these are exactly the same as the exact solutions
(7.1.38-40) in Sect. 7.1.2. The stationary solution of (7.2.47) is

P(z) = N ex Al L w (7.2.52)
) - ~u M\ﬂnb_o i
which is Gaussian approximation to the exact Poissonian.
The stationary solution of the Kramers-Moyal equation is
A a,(x") G
P(x) = 2-t—4
00 = e {25
= N (kya + k,x)~'+4kaatkig=2x (7.2.53)
In fact, one can explicitly check the limit by setting
= V(kyao/k,) + o (7.2.54)
so that
(7.2.53) = 4" (2Vk,a, + k 0) 1 +4Vkaso/kig-2Vkaoii—28 (7.2.55)
Then,
log P,(x) = const — a — ). (7.2.56)

Nﬁﬂunn
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Using the exact Poissonian solution, making the same substitution and using
Stirling’s formula

log x! ~ (x + 1) log x — x 4 const, (7.2.57)

one finds the same result as (7.2.56), but the exact results are different, in the sense
that even the ratio of the logarithms is different.

The term linear in é is, in fact, of lower order in V: because using (7.2.39), we
find 6 = z+/V and

|wui.mi|~
log P,(z) ~ const T A)\w\ Nv (7.2.58)

so that in the large ¥ limit, we have a simple Gaussian with zero mean.

¢) Moment Hierarchy
From the expansion (7.2.34), we can develop equations for the moments

(z*) = [ dz P(z,1)z* (7.2.59)
by direct substitution and integration by parts:

o bin!.uu:u m, k R:A_

Dwh_mAN—..v = M M“ + Qﬂiiéﬂ& h:ANifx w_..v . AM‘N.gV

s om! Znl(m— n)(k — n)!

One can develop a hierarchy by expanding {(z*) in inverse powers of Q'/?:

S =S MkQI, (7.2.61)
r=0
From such a hierarchy one can compute stationary moments and autocorrelation
functions using the same techniques as those used in handling the moment hierar-
chy for the small noise expansion of the Fokker-Planck equation in Sect.6.3.1.
Van Kampen [7.2] has carried this out.

7.2.4 Kurtz’s Theorem

Kurtz [7.6] has demonstrated that in a certain sense, the Kramers-Moyal expansion
can give rise to a slightly stronger result than van Kampen’s expansion. For the
restricted class of birth-death processes with polynomial transition probabilities,
he has shown the following. We consider the stochastic process obeying a birth-
death master equation

9, P(a, t) = M W(a|a)P(d', t) — Mw W(a'|a)P(a,t) (7.2.62)

in which the scaling condition (7.2.29) is satisfied.
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Then the process b(t), satisfying the stochastic differential equation

db(t) = a\(b)dt + /ay(b) AW(1) (7.2.63)

exists, and to each sample path a(r) of (7.2.62) a sample path of b(t) of (7.2.63)
exists such that

[b(t) — a(t)| ~ log V (7.2.64)

for all finite t.
This result implies the lowest order result of van Kampen. For, we make the
the substitution of the form (7.2.30)

a(t) = Vg(t) + V'"z(1) (7.2.65)
b(t) = V(1) + V'2(1) . (7.2.66)
Then the characteristic function of z(t) is

{exp [isz(1)]) = {exp [isV™"2a(t) — isVV2(0)])
= exp [— isV'23g(N)]<exp [isV~'"2b(1)]) + O(V~"'*log V)
= Lexp [isp()]) + OV~ log V). (7.2.67)

Using now the asymptotic expansion for the FPE we know the distribution function
of p(t) approaches that of the FPE (7.2.35) to O(V~"'2) and the result follows with,
however, a slightly weaker convergence because of the log ¥ term involved. Thus,
in terms of quantities which can be calculated and measured, means, variances,
etc, Kurtz’s apparently stronger result is equivalent to van Kampen'’s system size
expansion.

7.2.5 Critical Fluctuations

The existence of a system size expansion as outlined in Sect.7.2.3 depends on the
fact that &,(a) does not vanish. It is possible, however, for situations to arise where

&) =0, @265

where ¢, is a stationary solution of the deterministic equation. This occurs, for
example, when we consider the reaction of Sect.7.1.3 for which (using the notation
of that section)

&(y) =By +p—y — yBk,,
where k, = VZk,.

Two situations can occur, corresponding to 4 and B in Fig. 7.2. The situation
A corresponds to an unstable stationary state—any perturbation to the left will

eventually lead to C, but B is stable. Clearly the deterministic equation takes the
form
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Fig. 7.2. Graph showing different kinds of
behaviour of a,(y) which lead 1o a}(y) =0

=Y

y=—kiy — ¢ (7.2.69)

and we have a Master equation analogue of the cubic process of Sect.6.2.4a.
Van Kampen [7.13] has shown that in this case we should write

a=Q ¢§(t) + Q*u (7.2.70)
in which case (7.2.32) becomes +
dP(z, &I S e I < b_..EAI..M " iy
o — @O = 55 (- ) o+ o @0 7.271)
Suppose now that the first ¢ — 1 derivatives of @,(¢,) vanish. Then if we choose ¢,

for ¢(t), (7.2.71) becomes to lowest order

P 1 d
]MN+3 — m mmawﬁﬁbbh—ln. (1= MANnﬁv
1-2 *p :
+ tay(g,)Q2' 2 32 + higher terms. (7.2.72)

To make sure z remains of order unity, set

—(] — , __4q
I—g@—-—p=0-2p,ie,u e (7.2.73)
so the result is
aP 1 .., @ _ 9P
5, = @ e ot 4% ) (7.2.74)

(where @ and &, are evaluated at ¢,.) The fluctuations now vary on a slower time
scale 7 given by
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T = Q-+ (7.2.75)
and the equation for the average is

n.A.x.v — 1 79 ¢ e

7 =l Q_B {x%) (7.2.76)
which is no longer that associated with the linearised deterministic equation. Of
course, stability depends on the sign of @® and whether g is odd or even. The sim-
plest stable case occurs for ¢ = 3 which occurs at the critical point B of Fig.7.2,
and in this case we have the cubic process of Sect.6.3.4a. The long-time scale is

=0, (7.2.77)
We see that for large 2, the system’s time dependence is given as a function of
7 = 272, Only for times ¢ > £2''* does t become a significant size, and thus it
is only for very long times ¢ that any significant time development of the system
takes place. Thus, the motion of the system becomes very slow at large Q.

The condition (7.2.68) is normally controllable by some external parameter,
(say, for example, the temperature), and the point in the parameter space where
(7.2.68) is satisfied is called a critical point. This property of very slow time
development at a critical point is known as critical slowing down.

7.3 Boundary Conditions for Birth-Death Processes

For birth-death processes, we have a rather simple way of implementing boundary
conditions. For a process confined within an interval [a, b], it is clear that reflecting
"and absorbing boundary conditions are obtained by forbidding the exit from the
interval or the return to it, respectively. Namely,

Reflecting Absorbing

- 1hes + _— i
Boundary at a t (@) =0 t*a—1)=0 7.3.1)
Boundary at b t*(b)=0 t7(b+ 1) =0.

It is sometimes useful, however, to insert boundaries in a process and, rather than
set certain transition probabilities equal to zero, impose boundary conditions
similar to those used for Fokker-Planck equations (Sect.5.2.1) so that the resulting
solution in the interval [a, b] is a solution of the Master equation witl the ap-
propriate vanishing transition probabilities. This may be desired in order to pre-
serve the particular analytic form of the transition probabilities, which may have a
certain convenience.

a) Forward Master Equation
We can write the forward Master equation as
0 P(x,t|x', ") = t*(x — DP(x — 1, ¢| X, ') + t=(x + DP(x + 1, t]|x", 1)
— [t4(x) + =()IP(x, t] X, 1) . (1.3.2)

’
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Suppose we want a reflecting barrier at x = a. Then this could be obtained by re-
quiring

t~(a)=0
and
Pla— 1,t|x',1)=0. (7.3.3)

The only equation affected by this requirement is that for 8,P(a, t| x', t) for which
the same equation can be obtained by not setting ~(a) = 0 but instead introducing
a fictitious P(a — 1, t|x', t") such that

t*(a— DP(a— 1,t|x',t")y =t~ (a)P(a, t|x', 1) . (7.3.9)

This can be viewed as the analogue of the zero current requirement for a reflecting
barrier in a Fokker-Planck equation.
If we want an absorbing barrier at x = @, we can set

ttf@—1)=0. (7.3.5)

After reaching the point @ — 1, the process never returns and its behaviour is now
of no interest. The only equation affected by this is that for 8,P(a, t|x', 1) and the

same equation can be again obtained by introducing a fictitious P(a — 1, t|x', t)
such that ¥
Pla—1,t|x,1)=0. (7.3.6)

Summarising, we have the alternative formulation of imposed boundary condi-
tions which yield the same effect in [a, 5] as (7.3.1):

Foward Master Equation on interval [a, b]

Reflecting Absorbing
(7.3.7)
Boundary at g | ¢ (a)P(a) = t*(a— DDP(a—1) Pla—1)=0
Boundary at b [t*(B)P(B) =t~(b+ 1)P(b+1) PBH+1)=0
b) Backward Master Equation
The backward Master equation is (see Sect. 3.6)
0uP(x, t| X', 1) = t*()P(x, t|x" + 1,1") — P(x, t|x', 1")]
+ = (X[P(x, t|x" — 1, 1) — P(x, t|x', t)]. (7.3.8)

In the case of a reflecting barrier, at x = a, it is clear that ~(a) = 0 is equivalent to
constructing a fictitious P(x, t|a — 1, ') such that

Plx tlg — 1 tNh = Plv tla N 71 m
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In the absorbing barrier case, none of the equations for P(x,t|x’,t") with
x,x" € [a, b] involve t*(a — 1). However, because t*(a — 1) = 0, the equations in
which x" < a — 1 will clearly preserve the condition
P(x, t|x', 1) =0, x € [a, b], X <a—1 (7.3.10)
and the effect of this on the equation with x" = a will be to impose

Px,tla—1,t)=0 (7.3.11)

which is therefore the required boundary condition. Summarising:

L]

Backward Master Equation on interval [a, b]
Reflecting Absorbing

(7.3.12)
Boundary at a P(-la— 1) = P(-|a) P(-la—1)=0

Boundary at b P(-|b+1)=P(-|b) P-1b+1)=0

7.4 Mean First Passage Times

The method for calculating these in the simple one-step case parallels that of the
Fokker-Planck equation (Sect.5.2.7) very closely. We assume the system is confined
to the range

a<x<b (7.4.1)

and is abosrbed or reflected at either end, as the case may be. For definiteness we
take a system with

reflecting barrier at x = a;

absorbing state at x=b+ 1.

The argument is essentially the same as that in Sect.5.2.7 and we find that T(x),
the mean time for a particle initially at x to be absorbed, satisfies the equation
related to the backward Master equation (7.3.8):

tHTx+ 1) — T+t T(x—=1)—TH)]=—1 (7.4.2)
with the boundary condition corresponding to (5.2.159) and arising from (7.3.12):
Ta— 1) = T(a) (7.4.3a)

Th+1)=0. (7.4.3b)
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Define
U(x) = T(x + 1) — T(x) (7.4.4)

so (7.4.2) becomes

) U(x) — () U(x — 1) = 1. (7.4.5)
Define

#(x) = :_.M_ ﬂmw and (7.4.6)

S(x) = U(x)/¢(x) (7.4.7)

then (7.4.5) is equivalent to
t*()g()[S(x) — S(x — 1)] = —1 (7.4.8)

with a solution

S(x) = — aM [t (2)é(2)] - (7.4.9)

This satisfies the boundary conditio® (7.4.3a) which implies that

Ua—1)=S8@a@—1)=0. (7.4.10)
Hence,
T(x+ 1) — T(x) = I%&.HMW 1[1*(2)§(2)] (7.4.11)
and
. ) a reflecting
Te) = 3, 600) 2, /1" (2)4(2)]) w vm”moa_:m (7.4.12)

which also satisfies the boundary condition T(b 4+ 1) = 0, (7.4.3b).
Similarly, if a is absorbing and b reflecting

2 - a absorbing
T(x) = 3 6(») 33 1t (2)d(2)] b reflecting (7.4.13)
i S b>a

and a formula corresponding to (5.2.158) for both a and b absorbing can be
similarly deduced.
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7.4.1 Probability of Absorption

The mean time to absorption is always finite when a and b are finite. If, however,
b is at infinity and is reflecting, the mean time may diverge. This does not itself
mean that there is a finite probability of not being absorbed. The precise result [Ref.
7.7, Sect.4.7] is the following.

If the process takes place on the interval (a, oo) and a is absorbing, then the
probability of absorption into state @ — 1 from state x is given as follows. Define
the function M(x) by

& XCJ
M(x) = =1: 7.4.14
@ =ELE 0419
Then if M(x) < oo, the probability of absorption at a — 1, from state x, is
M(x)
T+ MK (7.4.15)

and if M(x) = oo, this probability is one. If this probability is 1, then the mean
time to absorption is (7.4.13).

7.4.2 Comparison with Fokker-Planck Equation

The formulae (7.4.12, 13) are really very similar to the corresponding formulae
(7.4.1, 2) for a diffusion process. In fact, using the model of Sect. 7.2.1c it is not
difficult to show that in the limit § — O the two become the same.

If we wish to deal with the kind of problem related to escape over a potential
barrier (Sect.5.2.7c) which turn up in the context of this kind of master equation,
for example, in the bistable reaction discussed in Sect.7.1.3, very similar approxima-
tions can be made. In this example, let us consider the mean first passage time from
the stable stationary state x, to the other stable stationary state x,.

Then the point x = 0 is a reflecting barrier, so the interval under consideration
is (0, x;) with initial point x,. Notice that

= 17(z)  P0)1*(0)

#x) = mp 1*(z)  Py(x)1*(x) (7.4.16)
so that
T, —x) = 3% [P S PL) - (7.4.17)

y=xi =0

If we assume that P,(y)™' has a sharp maximum at the unstable point x,, we can
set y = x, in all other factors in (7.4.17) to obtain

M St PO, (7.4.18)

T(x; = x;) ~ 05
y=x
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m =32 Pz) (7.4.19)
z=0
and is the total probability of being in the lower peak of the stationary distribution.
The result is a discrete analogue of those obtained in Sect. 5.2.7c.

7.5 Birth-Death Systems with Many Variables

There is a very wide class of systems whose time development can be considered as
the result of individual encounters between members of some population. These
include, for example,
—chemical reactions, which arise by transformations of molecules on collision;
—population systems, which die, give birth, mate and consume each other;
—systems of epidemics, in which diseases are transmitted from individual to
individual by contact.
All of these can usually be modelled by what I call combinatorial kinetics, in which
the transition probability for a certain transformation consequent on that en-
counter is proportional to the number of possible encounters of that type.
For example, in a chemical reaction X = 27, the reaction X — 2Y occurs by
spontaneous decay, a degenerate kind of encounter, involving only one individual.
The number of encounters of this kind is the number of X; hence, we say

tx—x—1lL,y—y+2)=ky. (7.5.1)

For the reverse reaction, one can assemble pairs of molecules of ¥ in y(y — 1)/2
different ways. Hence

tx—x+1Ly—=y—2=kyly—1). (7.5.2)

In general, we can consider encounters of many kinds between molecules, species,
etc., of many kinds. Using the language of chemical reactions, we have the general
formulation as follows.

Consider an n-component reacting system involving s different reactions:

u.n+
STNAX, *“,u SMAX, (A=1,2..5). (1.5.3)
@ A

The coefficient N4 of X, is the number of molecules of X, involved on the left
and M4 is the number involved on the right. We introduce a vector notation so that
if x, is the number of molecules of X, then

x = A.,.ﬁ_w X2,y ..;tﬂﬂv

Nt = (N{,N{, ... N9 (7.5.4)

M= (M1, M4, ..., M)

and we also define
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rf= M*— N4, (7.5.5)
Clearly, as reaction 4 proceeds one step in the forward direction,
xX—x+r (7.5.6)
and in the backward direction,
x-+x—1rt. (7.5.7)
The rate constants are defined by '

1
@) =kl e M..ﬂ;.m

15(x) =k Hm A4|M..“.E;|u_

(7.5.8)

which are proportional, respectively, to the number of ways of choosing the com-
bination N* or M* from x molecules. The Master equation is thus

a.P(x,1) = 3 {[ta(x + r)P(x + r, 1) — t;(x)P(x, 1))
+ [ti(x — r)P(x — 4, t) — t(x)P(x, t)]}. (7.5.9)

This form is, of course, a completely general way of writing a time-homogeneous
Master equation for an integer variable x in which steps of size r# can occur. It is
only by making the special choice (7.5.8) for the transition probabilities per unit
time that the general combinatorial Master equation arises. Another name is the
chemical Master equation, since such equations are particularly adapted to chemical
reactions.

7.5.1 Stationary Solutions when Detailed Balance Holds

In general, there is no explicit way of writing the stationary solution in a practical
form. However, if detailed balance is satisfied, the stationary solution is easily
derived. The variable x, being simply a vector of numbers, can only be an even
variable, hence, detailed balance must take the form (from Sect. 5.3.5)

12(x + r)P(x + r') = t3(x)P(x) (7.5.10)

for all A. The requirement that this holds for all 4 puts quite stringent requirements
on the r%. This arises from the fact that (7.5.10) provides a way of calculating
P(x, + nr*) for any n and any initial x,. Using this method for all available 4, we
can generate P,(x) on the space of all x which can be written

xX=1x,+ X n,,t; (n, integral) (7.5.11)

but the solutions obtained may be ambiguous since, for example, from (7.5.10) we
may write
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P(x) ti(x) t3(x + r4)
tix +r)tz(x 4+t 4 r7)
but (7.5.12)

P,(x) t3(x) t4(x + r)
(305 + 1) (3(x + 4+ 1)

P(x + ) + 1] =

I

Pl(x +r®) + r]

Using the combinatorial forms (7.5.8) and substituting in (7.5.12), we find that
this condition is automatically satisfied.

The condition becomes nontrivial when the same two points can be connected
to each other in two essentially different ways, i.e., if, for example,

N4 + N®
M+ M? (7.5.13)

but rA=r=r.

In this case, uniqueness of Py(x + r#)in (7.5.10) requires

ti(x) (@)
txx + 1) t3x +7r) (7.5.14)
and this means .
ﬁ.
ki _ ks
o (7.5.15)
If there are two chains 4, B, C, ..., and A, B, C', ..., of reactions such that
Pt = 4+ (7.5.16)
Direct substitution shows that
Px4ri4erP+rr4 . )=Px+r+r+r"+.) (7.5.17)
only if
kikike = _Kukpks
kikzkz  kukg ko (7.5.18)

which is, therefore, the condition for detailed balance in a Master equation with
combinatorial kinetics.
A solution for P,(x) in this case is a multivariate Poisson

P(x) =TI %" (7.5.19)

a Xa!
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which we check by substituting into (7.5.10) which gives

a(atDe % ki(x. + rd)! e afae% kx|
a+rD (xa+ri—MH T x! (x,— NH

m (7.5.20)
Using the fact that

= M- N2,
we find that

ki Tl as = k; I] a, ™ . (7.5.21)

However, the most general solution will have this form only subject to conser-
vation laws of various kinds. For example, in the reaction

X ==2Y, (7.5.22)

the quantity 2x + y is conserved. Thus, the stationary distribution is

e D}arau
= € % 50x + y) (7.5.23)
where ¢ is an arbitrary function. Choosing ¢(2x + y) = 1 gives the Poissonian

solution. Another choice is
$(2x + y) = 3(2x + y, N) (7.5.24)

which corresponds to fixing the total of 2x 4 y at N.
As a degenerate form of this, one sometimes considers a reaction written as

A==2Y (7.5.25)

in which, however, A4 is considered a fixed, deterministic number and the possible
reactions are

A—=2Y: t*(y) =ka (7.5.26)
2Y—-A4 () =kyy—1.

In this case, the conservation law is now simply that y is always even, or always
odd. The stationary solution is of the form

P(y) = wh. w(y, @) (7.5.27)

where (y, @) is a function which depends on y only through the evenness or oddness
of y.
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7.5.2 Stationary Solutions Without Detailed Balance (Kirchoff’s Solution)

There is a method which, in principle, determines stationary solutions in general,
though it does not seem to have found great practical use. The interested reader
is referred to Haken [Ref. 7.8, Sect.4.8] and Schnakenberg [7.4] for a detailed treat-
ment. In general, however, approximation methods have more to offer.

7.5.3 System Size Expansion and Related Expansions

In general we find that in chemical Master equations a system size expansion does
exist. The rate of production or absorption is expected to be proportional to £, the
size of the system. This means that as £2 — co, we expect

x~Qp, (7.5.28)

where p is the set of chemical concentrations. Thus, we must have ¢ 5(x) proportional
to Q as 2 — oo, so that this requires

~KtO wu.__,_.%i
A~ (7.5.29)
|wuxn+_

ki ~Kk30

Under these circumstances, a multiyariate form of van Kampen’s system size expan-
sion can be developed. This is so complicated that it will not be explicitly derived
here, but as in the single variable case, we have a Kramers-Moyal expansion
whose first two terms give a diffusion process whose asymptotic form is the same as
that arising from a system size expansion.

The Kramers-Moyal expansion from (7.5.9) can be derived in exactly the same
way as in Sect.7.2.2, in fact, rather more easily, since (7.5.9) is already in the ap-
propriate form. Thus, we have

All 3..

[12(x)P(x, )] +

_Al - [t 2(x)P(x, 1)] (7.5.30)

3P(x, t)=3}

and we now truncate this to second order to obtain

3.P(x, 1) = — 3 Al A(X)P(x, )] + } 3 0,0 Bus(x)P(x, 1)], (7.5.31)
Ax) = 2 rilti(x) — 12(x)]
Ba(x) = 2 rdrilti(x) + 13(x)] -

(7.5.32)

In this form we have the chemical Fokker-Planck equation corresponding to the

RAocton nmnatine Wawevar we nnte that thic i reallv anlv valid as an anproxima-
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tion, whose large volume asymptotic expansion is identical to order 1/Q with that
of the corresponding Master equation.

If one is satisfied with this degree of approximation, it is often simpler to use the
Fokker-Planck equation than the Master equation.

7.6 Some Examples

761 X+ A—2X

Here,
) = kax (71.6.1)
17(x) = kpx(x — 1) .
Hence,
A(x) = kjax — kyx(x — 1) ~ kjax — k,x* to order 1/Q (7.6.2)

B(x) = kyax + kox(x — 1) ~ kyax + k;x* to order 1/Q .

¥ k
762 X=—=¥==ud
k ¥

Here we have

)= P =1, —1) (1.6.3)
t7(x) = kx
@ =kal 0. (71.6.4)
1;(x) =
Hence,
AGx) = ﬁ Oy — k) + ﬂ (ka — 1) (7.6
— ﬁ L w (1.6.6)
kx + ka — 2yy
Bx) = : T. |:_ 57 T E ©, 1| tka + ) (7.6.7)
ﬁ w+kx  —yy—kx % (7.6.8)
yy —kx  2yy + kx + ka
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If we now use the linearised form about the stationary state,
yy =kx =ka (7.6.9)

2ka —2ka
ﬁ g (7.6.10)

—2ka dka
7.6.3 Prey-Predator System

The prey-predator system of Sect. 1.3 provides a good example of the kind of system
in which we are interested. As a chemical reaction we can write it as

) X+A—=2X r=(,0)
i) X+ Y—=2Y rP=(11) (1.6.11)
iii) Y— B P =0, —1).

The reactions are all irreversible (though reversibility may be introduced) so we
have

t7(x)=0 (A=1,23)

but

¥

- - x! i

tix)=k nﬁlk AT kyax

05 IR | S

t3(x) ...SA DG =D koxy (7.6.12)
1
ti(x) = Hi } ksy .

The Master equation can now be explicitly written out using (7.5.9): one obtains

0.P(x,y) = kialx — DP(x — 1, ) + ky(x + Dy — DP(x + 1,y — 1)
+ki(y + 1) P(x, y + 1) — (kiax + koxy + ksy) P(x, y). (7.6.13)
There are no exact solutions of this equation, so approximation methods must be

used.
Kramers-Moyal. From (7.5.32)

1 0
A(x) = T_L k,ax + ﬁ ; k,xy + ﬁl;kt‘_ (7.6.14)
_ ﬁ:eﬂ — kaxy y (7.6.15)
nﬁukﬂ — nﬂa_x
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—1
B(x) = | |(1,0)kax + _Tl_. Dkxy + : B —Dksy (7.6.16)
k k — k
_ "% + kyxy 2XY ) (7.6.17)
—k,xy koxy + kyy

The deterministic equations are

d[x kyax — kyxy

L1 = . (7.6.18)
dt |y|  lkaxy — kyy
Stationary State at
X, kilk
_ [tk ] (7.6.19)
Vs _wn_n____mnu

To determine the stability of this state, we check the stability of the iinearised
deterministic equation

d [0x] _9A(x,) 0A(x,)
| 5 ox, ox + o7, J
kia — kyy, —k,x,
= [ kel g [ 5y (7.6.20)
Nu%u Nﬁuku - wﬂu
0 l_ﬁﬂu dx
s ! (7.6.21)
k,a 0 | &y
The eigenvalues of the matrix are
A= + i(kk;a)''? (7.6.22)

which indicates a periodic motion of any small deviation from the stationary state.
We thus have neutral stability, since the disturbance neither grows nor decays.
This is related to the existence of a conserved quantity

V=rky(x+ y) — k;logx — kyalog y (7.6.23)

which can readily be checked to satisfy dV/dt = 0. Thus, the system conserves ¥
and this means that there are different circular trajectories of constant V.
Writing again

Ko B (7.6.24)
y=y,+dy

and expanding to second order, we see that
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Vit A&q oy v (7.6.25)

2\ T Kap

so that the orbits are initially elliptical (this can also be deduced from the linearised
analysis).

As the orbits become larger, they become less elliptic and eventually either
x or y may become zero.

If x is the first to become zero (all the prey have been eaten), one sees that y
inevitably proceeds to zero as well. If y becomes zero (all predators have starved to
death), the prey grow unchecked with exponential growth.

Stochastic Behaviour. Because of the conservation of the quantity ¥, the orbits have
neutral stability which means that when the fluctuations are included, the system
will tend to change the size of the orbit with time. We can see this directly from the
equivalent stochastic differential equations

dx kyax — k,xy dw (1)
- dt + C(x, ) , (7.6.26)
dy kyxy — ksy dW,(t)
where
C(x, y)C(x, )" = B(x) - (7.6.27)
Then using Ito’s formula T
14 oV Vv atv
dVixish = % +S b+ H S e+ 250 dvdy + 5 %u (1.6.28)
so that
V
@, = (3 taax — ko) + 5 Geaxy — koy)) e (7.6.29)

k
ek Am: 252 + hup : v dr.
The first average vanishes since ¥ is deterministically conserved and we find

1 \rra kskay | kiksax | kiksay (7.6.30)

X y y

AdVix, y)) =

All of these terms are of order 27! and are positive when x and y are positive.
Thus, in the mean, V(x, y) increases steadily. Of course, eventually one or other of
the axes is hit and similar effects occur to the deterministic case. We see that
when x or y vanish, ¥ = co.

Direct implementation of the system size expansion is very cumbersome in this
case, and moment equations prove more useful. These can be derived directly from
the Master equation or from the Fokker-Planck equation. The results differ slightly
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from each other, by terms of order inverse volume. For simplicity, we use the FPE
so that

d [ kadxd — kylxy)
d CL N T%Qv — k(D (7.6.31)
&% (2x dx + dx*)
2o |= 35| < v + v dx 4 ax ) -
OB Qy dy + dy*)
2kia{x®y — 2kaxPy) + kiadx) + kaxy)
= kaolx®y — y2x) + (ki@ — ks — ko)Cxpy |- (7.6.33)

2k {xy®y — 2ks(y?) + kalxy) + ksly)

Knowing a system size expansion is valid means that we know all correlations and
variances are of order 1/2 compared with the means.
We therefore write

x = {x) + ox (7.6.34)
Y=Ly 0y

and keep terms only of lowest order. Noting that terms arising from {dx?), (dxdy)
and (dy*) are one order in 2 smaller than the others, we get

4[] _ [katd k)< % . ti_&&v_ e
L) T akxd (s — kaay<n] T Lkaoxdyy
L[ ] [hiata + ko)
2| <axayy | =| —katxy
L@ 1 Loty + ks (7.6.36)
20 — sy, —2eaxd .0 (%
THPRS , ka— ke k() — ), —aCxd || <Oxdp)
0 , 2ka() , 2kaxy — 2k, | <y

.We note that the means, to lowest order, obey the deterministic equations, but to
next order, the term containing {dxdy) will contribute. Thus, let us choose a sim-
plified case in which

ka=ki=1, kh=a«a (7.6.37)
which can always be done by rescaling variables. Also abbreviating

(x> = X, ¥ =y, (Ox*) — [, (6xy) — g, {9y*) —~h, (7.6.38)

272 7. Master Equations and Jump Processes
we obtain
X X — ax —ag
<01
Iy axy —y ag
F X + axy 2 — 2ay —2ax 0 f
% g|=|—axy |+]|ay alx —y) —ax gl (7.6.39)
h axy + y 0 2ay 2ax — 2] h

We can attempt to solve these equations in a stationary state. Bearing in mind that
f, g, h,are a factor 27! smaller than x and y, this requires a to be of order 27! [this
also follows from the scaling requirements (7.5.29)]. Hence « is small. To lowest
order one has

Xy =Y, = lfa. (7.6.40)

But the equations for f; g, & in the stationary state then become

2g 2/a
b= | = <1/a (7.6.41)
—2g 2/a

¥
which are inconsistent. Thus this method does not yield a stationary state. Alter-
natively one can solve all of (7.6.39) in a stationary state.
After some manipulation one finds

x, =, (7.6.42)

8 = ﬁl_ﬁ\d- - kav

so that
fi=x(—2ax?+ x,(2 —a) — 1) [ (2 — 2ax,) (7.6.43)
h, = x(—2ax? + x,(2 + a) + 1)/(2 — 2ax,)
and the equation for g, gives
—ax? +ax,(f, — h) =0 (7.6.44)
giving a solution for x,, y,, etc.
Xy=y =4
fi=taf(a—2) (7.6.45)

& =12 — a)a
h.= —1/(a —2)
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and for small a in which the method is valid, this leads to a negative value for f,
which is by definition, postive. Thus there is no stationary solution.

By again approximating x, = y, = |/a, the differential equations for f; g, and A
can easily be solved. We find, on assuming that initially the system has zero vari-
ances and correlations,

1 2t
fit) = ‘Mmﬁnom 2t— 1)+ =

g(t) = — Wm:_ 2t (7.6.46)

h(t) = ﬁnom 2t — 1)+ Wm

Notice that f{r) and A(t) are, in fact, always positive and increase steadily. The solu-
tion is valid only for a short time since the increasing value of g(t) will eventually
generate a time-dependent mean.

7.6.4 Generating Function Equations

In the case of combinatorial kinetics, a relatively simple differential equation can be
derived for the generating function:

G(s,n= MQ._ ) P(x,1). (7.6.47)

For we note that
0,G(s, t) = 9;G(s, 1) + 9;G(s, t) (7.6.48)
where the two terms correspond to the ¢* and 1~ parts of the master equation. Thus

— _—-Lv_

+ _ + kn —_—
m.Q?._&I...an ?m?l'illk == NBT™ “_wﬁh it
! S
-1 ﬁg_ T.ﬂ |- (7.6.49)
Changing the summation variable to x — r4 and renaming this as x, in the first
term we find

!
hnf_‘

3:G(s, 1) = M.:T,?3 u?|z¢_rTﬁ.c. (7.6.50)

Note that

:?ﬁ‘ﬁ%nm ? Sa v g (7.6.51)
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and that
s¥atrax,! A 4
i
so that
3:G(s, 1) = S ki E P I b,“,,uu 32 G(s, 1) . (7.6.53)

Similarly, we derive a formula for 8; G(s, t) and put these together to get

2,G6,1) = 3 (IT 2~ 11 s2%)

A a a

?ﬁ Mo — ;I Hé G@s,1) | (1.6.54)

which is the general formula for a generating function differential equation. We now
give a few examples.

a) An Exactly Soluble Model
Reactions: (A4, B, C held fixed)

A+ xB ox 4D %ﬂm_,a_nuﬁ_n_
ki = koA (7.6.55)
ki =0
k
m+km%n N =1, M?*=0;r* = —I|
3
ki = k,B (7.6.56)
k; = k,C.

Hence, from (7.6.54), the generating function equation is

= (s* — 5)(k,43,G) + (1 — s)(k,B3,G — k,CG) . (7.6.57
Solve by characteristics.
Set
kkB=p kA=a kC=y. (7.6.58

The characteristics are

. S ds e B (7.6.59

1 (I —=s)MB—as) y(1—9G
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bmv e@he — y (7.6.60)

(B—asyG=nw. (7.6.61)

The general solution can be written v = F(u), i.e.,

G =(f— a,v-:..w_n a&:?ﬂ: . (1.6.62)

— as¥

From this we can find various time-dependent solutions. The conditional probabi-
lity P(x, t|y, 0) comes ,_D.c_.: the initial condition

G,(s5,0) = s* (7.6.63)
= F(z) = (1 — Bz)*(1 — az)™"'* (B — a)'® (7.6.64)
s a _ a—Ary 2 =iry]»
= G5, 1) = 2[B(1 — ™) — s(a — fe™*)] (7.6.65)
% :.% - _Rmtpav = ..H.mm_ = nl».v”_llalw
(with 2 = B — a).
As t — co, a stationary state exists only if f > a and is
G,(s, ) = (f — as)™"'%(f — a)''® (7.6.66)
> P(x) = I'(x + yla)a/B)* (B — ay'=. (7.6.67)

I'(yla)x!

We can also derive moment equations from the generating function equations by
noting

muﬁwﬁh. nu _ =1 = Ahﬁhuv

(7.6.68)
93G(s, 1) ],my = Cx(t)[x(2) — 1] .
Proceeding this way we have
4 (1)) = ks — ki BYXX(D)Y + ksC (7.6.69)
and
%Qﬁﬁgl;vuxfmIFEQS?Sl_v
+ 2k, ALx(1)) + 2k,CEx(2)) . (7.6.70)

These equations have a stable stationary solution provided
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k,A < k,B, e, a<p.

In this case, the stationary mean and variance are
(x)y = ksCl(k, B — k,A) (7.6.71)
var {x}, = k,k;BC/(k,A — k,B)*. (7.6.72)

This model is a simple representation of the processes taking place in a nuclear
reactor. Here X is a neutron. The first reaction represents the fission by absorption
of a neutron by 4 to produce residue(s) D plus two neutrons. The second re-
presents absorption of neutrons and production by means other than fission.

As k,A approaches k, B, we approach a critical situation where neutrons are ab-
sorbed and created in almost equal numbers. For k,4 > k,B, an explosive chain
reaction occurs. Notice that (x,> and var {x}, both become very large as a critical
point is approached and, in fact,

var{x,} kB
&) RB—Kd s

Thus, there are very large fluctuations in {x,) near the critical point.
Note also that the system has linear equations for the mean and is Markovian,
so the methods of Sect. 3.7.4 (the regression theorem) show that
¥

{x(1), x(0)), = exp [(kA — kyB)t]var {x}, (7.6.74)

so that the fluctuations become vanishingly slow as the critical point is approached,
i.e., the time correlation function decays very slowly with time.

k
b) Chemical Reaction X, ﬂ.l._ X,
2
One reaction
1 0 —1
2 = . E = a r=
0 1 1
ki = ky, ki =k, (7.6.75)

0,G(sy, 52, 1) = (52 — 5:)(k, 0, — k20,))G(sy, 52, 1)

can be solved by characteristics. The generating function is an arbitrary function
of solutions of

dt ds, ds,

1~ k(ss— ) kaosz— 1)

(7.6.76)

Two integrals are solutions of

kads, + kdsa =0 = k.s: + kisa=w. (7.6.77
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(ks + kydr = L= )
v (7.6.78)
— m.mu| h_unn__fiﬁ: —
= G5y, S, 1) = Flhos, + kysy, (52 — 5,)e™ tatkad] (1.6.79)
The initial condition (Poissonian)
Gls1, $2,0) = exp [a(s; — 1) + B(s — D] (7.6.80)
gives the Poissonian solution:
kB — k
G(sy, 5,, 1) = exp I_wﬂmw_|+ khQ (5, — s,)ekath)
S fss — 1) + sy — 1. (7.681)

In this case, the stationary solution is not unique because x + y is a conserved
quantity. From (7.6.79) we see that the general stationary solution is of the form

G(sy, 53 ) = F(kys, + Ky, 0) . (7.6.82)
Thus,

.mu|Q —_— n mﬂq

i k3 353 (7.6.83)

which implies that, setting 5, = 5, = 1,

ki, = sy (7.6.84)

7.7 The Poisson Representation [7.10]

This is a particularly elegant technique which generates Fokker-Planck equations
which are equivalent to chemical Master equations of the form (7.5.9).

We assume that we can expand P(x, t) as a superposition of multivariate uncor-
related Poissons:

P(x,1) = [ da T1*_% f(a, 1) .7.1)
This means that the generating function G(s, ) can be written

G(s, 1) = [ da exp[3 (s, — Daf(a, 1). (7.7.2)

We substitute this in the generating function equation (7.6.54) to get
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a6, = 33 du [ 11 oz, + 1)~ 5z, +1)"]

x ?H I & = kg II ) v exp [ (5. — cn.; fla, ).  (1.13)

We now integrate by parts, drop surface terms and finally equate coefficients of the
exponential to obtain

M- - 2 - n - )]

A a

P (7.7.4)
X TH Mol — ki TI nw.?a, .

a) Fokker-Planck Equations for Bimolecular Reaction Systems

This equation is of the Fokker-Planck form if we have, as is usual in real chemical
reactions,

IMig2

(1.1.5)
2NI<2

which indicates that only pairs of molecules at the most participate in reactions.

The FPE can then be E:.E:mmau.mm follows. Define the currents

J(@) =k T & — k; TT a'?, (1.7.6)
the drifts
AJ(a)] = M riJ (a), LT

and the diffusion matrix elements by
BulJ(@)] = 2 J(@)(MiMy — NING — 6,,r7) . (7.1.8)
A

Then the Poisson representation FPE is

% - MMW.. {4 (@) fle, 1))
mu
+ 3% 27— (Buld(@)]f (e, 1)} .
ab mthQb AM-QWU

Notice also that if we use the explicit volume dependence of the parameters given
in Sert 7513 (75720 and define
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=a,/V (7.7.10)
= y-u2 (7.7.11)

and F(, 1) is the quasiprobability in the # variable, then the FPE for the # variable
takes the form of

oF(n, 1)

Tl s AmFm 0] + 5 e s BesFL0) | (0.7.12)
with

An) = 52 r2d ) (7.7.132)

Lun) = w4 11 e — K I 3 (7.7.13b)

Bun) = 5 L MEME — NANE — S,ur2) . (1.7.13c)

In this form we see how the system size expansion in ¥~!/? corresponds exactly to
a small noise expansion in # of the FPE (7.7.12). For such birth-death Master
equations, this method is technically much simpler than a direct system size ex-
pansion.

b) Unimolecular Reactions
If for all A4,

2MI<1 and 3 NI

then it is easily checked that the diffusion coefficient B,,(s) in (7.7.13) vanishes,
and we have a Liouville equation. An initially Poissonian P(x, #,), corresponds to a
delta function F(g, ,), and the time evolution generated by this Liouville equation
will generate a delta function solution, &(y — #(t)), where #(¢) is the solution of

dnldt = A(n)

This means that P(x, t) will preserve a Poissonian form, with mean equal to #(1).
Thus we derive the general result, that there exist propagating multipoissonian
solutions for any unimolecular reaction system. Non Poissonian solutions also
exist—these correspond to initial F(y, ,) which are not delta functions.

¢) Example
As an example, consider the reaction pair

: k2
i) A4+ Xe—=2X
ke (1.7.14)

& ky
ii) B+ X—0C
k3
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N'=1, M'=2 ki=IkAd ki=k,
Ni=1, M?=0, ki=hkB, k =kC

I

so that (7.7.4) takes the form

w% - Z_ . %IL = A_ o %n T&n —kaol (1.7.15)

5 T - T - %w T_ma — kO f

g %n::n + (koA — kiB)a — kia®) + 5 a Slkda — kel f - (17.16)

ar

which is of the Fokker-Planck form, provided k,da — k,a* > 0. Furthermore,
there is the simple relationship between moments, which takes the form (in the
case of one variable)

(XD = Mhmn [x(x—D...(x—r+1) Inw.mw fla)

= [dadfla) = ().

(7.7.17)

This follows from the factorial moments of the Poisson distribution (Sect. 2.8.3).
However, f(«) is not a probability or at least, is not guaranteed to be a probability
in the simple minded way it is defined. This is clear, since any positive superposi-
tion of Poisson distributions must have a variance at least as wide as the Poisson
distribution. Hence any P(x) for which the variance is less than that of the Poisson
distribution i.e., cannot be represented by a positive f(a).

A representation in terms of distributions is always possible, at least formally.
For if we define

fi(@) = (—1)"8*(a)e”, then (7.7.18)

[ da f(a)e %a*/x! = [ da a* H m& 5(a)/x! (7.7.19)

and integrating by parts
= duy (7.7.20)
which means that we can write

P(x)= | m%&&?:ﬂ (—1) P(y)8”(a)e’] (7.7.21)

so that in a formal sense, an f(a) can always be found for any P(x).

The rather singular form just given does not, in fact, normally arise since, for
example, we can find the stationary solution of the FPE (7.7.16) as the potential
solution (up to a normalisation)
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which is a relatively smooth function. However, an interpretation as a probability
is only possible if f,(«) is positive or zero and is normalisable.
If we define

d = (k,Blky — k;Clk,A), (7.7.23)
then fi(a) is normalisable on the interval (0, k,A4/k,) provided that

0>0 (7.7.24)
kes > 0.

Clearly, by anmn_:cs.” k, must be positive.

It must further be checked that the integrations by parts used to derive the FPE
(7.7.4) are such that under these conditions, surface terms vanish. For an interval
(a, b) the surface terms which would arise in the case of the reaction (7.7.14) can be
written

[{(kda — kua® — kyBa + ksC)f — dul(kaa — kia))f ]} fe2)
+ (s — ki) [(s — Dee]]s. (1.7.25)

Because of the extra factor (s — 1) on the second line, each line must vanish separa-
tely. It is easily checked that on the interval (0, k,A/k,), each term vanishes at
each end of the interval for the choice (7.7.22) of f, provided J and k; are both
greater than zero.

In the case where k; and & are both positive, we have a genuine FPE equivalent
to the stochastic differential equation

da = [ksC + (koA — k,B)a — kea®ldt + /Al Aa — kea@)dW(t).  (1.7.26)

The motion takes place on the range (0, k,4/k,) and both boundaries satisfy the cri-
teria for entrance boundaries, which means that it is not possible to leave the
range (0, k,A/[k,) (Sect.5.2.1).

If either of the conditions (7.7.24) is violated, it is found that the drift vector is
such as to take the point outside the interval (0, k,4/k,). For example, near « = 0
we have

da ~ k,C dt (1.7.27)

and if k,C is negative, a will proceed to negative values. In this case, the coefficient
of dW(t) in (7.7.26) becomes imaginary and interpretation is no longer possible
without further explanation.

Of course, viewed as a SDE in the complex variable

«=a, + ia, (7.7.28)

the SDE is perfectly sensible and is really a pair of stochastic differential equations
for the two variables a, and a,. However, the corresponding FPE is no longer the
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one variable equation (7.7.16) but a two-variable FPE. We can derive such a FPE
in terms of variations of the Poisson representation, which we now treat.

7.7.1 Kinds of Poisson Representations
Let us consider the case of one variable and write
P(x) = .% du(a)(ea*[x)f(a) . (7.7.29)

Then u(e) is a measure which we will show may be chosen in three ways which all
lead to useful representations, and &7 is the domain of integration, which can take
on various forms, depending on the choice of measure.

7.7.2 Real Poisson Representations
Here we choose
du(a) = da (7.7.30)

and & is a section of the real line. As noted in the preceding example, this represen-
tation does not always exist, but where it does, a simple interpretation in terms of
Fokker-Planck equations is possible.

7.7.3 Complex Poisson Representdtions

Here,
du(e) = da (7.7.31)

and & is a contour C in the complex plane. We can show that this exists under
certain restrictive conditions. For, instead of the form (7.7.18), we can choose

P LI
fila) = sma'e (7.7.32)
and C to be a contour surrounding the origin. This means that

__
P)(x) = 5 w erl=34,,. (1.7.33)

By appropriate summation, we may express a given P(x) in terms of an f(a) given by

f(@) = 5= 3 P()etar 1y . (7.7.34)
2ni 5
If the P(y)are such that for all y, y!P(y) is bounded, the series has a finite radius of
convergence outside which f(a) is analytic. By choosing C to be outside this circle of
convergence, we can take the integration inside the summation to find that P(x)
is given by
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P(x) = § da(e™%a*/x))f(a). (7.7.35)
C

a) Example: Reactions (1) 4 + Y ——2X, 2) B+ X—C
We use the notation of Sect. 7.7 and distinguish three cases, depending on the
magnitude of é. The quantity J gives a measure of the direction in which the reac-
tion system (7.7.14) is proceeding when a steady state exists. If § > 0, we find that
when x has its steady state value, reaction (1) is producing X while reaction (2)
consumes X. When & =0, both reactions balance separately—thus we have
chemical equilibrium. When & < 0, reaction (1) consumes X while reaction (2) pro-
duces X.
i) 6 > 0:according to (7.7.24), this is the condition for f() to be a valid quasipro-
bability on the real interval (0, k;A/k,). In this range, the diffusion coefficient
(k,Aa — kqa®) is positive. The deterministic mean of a, given by

kA — kB + [(k,A — k,B)* + 4k:k,C]'?
B Mhﬂb

a

(7.7.36)

lies within the interval (0, k,A[k,). We are therefore dealing with the case of a genu-
ine FPE and f,(a) is a function vanishing at both ends of the interval and peaked
near the deterministic steady state.

ii) = 0: since both reactions now balance separately, we expect a Poissonian
steady state. We note that f,(a) in this case has a pole at @ = k,A4/k, and we choose
the range of @ to be a contour in the complex plane enclosing this pole. Since this
is a closed contour, there are no boundary terms arising from partial integration
and P,(x) given by choosing this type of Poisson representation clearly satisfies
the steady state Master equation. Now using the calculus of residues, we see that

e %oag
x!

P(x) = (7.7.37)

with
ay = k,Alk, .

iii) 6 < 0: when 6 < 0 we meet some very interesting features. The steady state
solution (7.7.22) now no longer satisfies the condition & > 0. However, if the range
of & is chosen to be a contour C in the complex plane (Fig. 7.3) and we employ
the complex Poisson representation, P,(x) constructed as

et
x!

P(x) = [ daf(a) (7.7.38)
C

is a solution of the Master equation. The deterministic steady state now occurs

at a point on the real axis to the right of the singularity at « = k,A/k,, and asymp-

totic evaluations of means, moments, etc., may be obtained by choosing C to pass

through the saddle point that occurs there. In doing so, one finds that the variance

of a, defined as

284 7. Master Equations and Jump Processes

Fig. 7.3. Contour C in the complex plane
for the evaluation of (7.7.38)

var {a} = (&) — (®)?, (7.7.39)
is negative, so that
var{x} = (¥ — (O = (a®) — (@) + (&) < (%) (7.7.40)

This means that the steady state is narrower than the Poissonian. Finally,
it should be noted that all three cases can be obtained from the contour C. In
the case where 6 = 0, the cut from the singularity at a = k,A/k, to —co va-
nishes and C may be distorted to a simple contour round the pole, while if § > 0,
the singularity at @ = k,A/k, is now integrable so the contour may be collapsed
onto the cut and the integral evaluated as a discontinuity integral over the range
[0, k;A[k,]. (When & is a positive integer, this argument requires modification).

b) Example: Reactions B L , 2K Ja 4
For which the Fokker-Planck equation is

m[hmhlh.w e %m [,V — 21,V "'a?)f(e, 1)] — %ﬂzﬁ_laﬁs 0],  (1.7.41)

where .,V = kB, k, V™! = k; and V is the system volume. Note that the diffusion
coefficient in the above FPE is negative on all the real lines.
The potential solution of (7.7.41) is (up to a normalisation factor)

fl@) = a? exp 2a + aV?/a) (7.7.42)

with a = 2k,/k, and the « integration is to be performed along a closed contour
encircling the origin. Of course, in principle, there is another solution obtained by
solving the stationary FPE in full. However, only the potential solution is single
valued and allows us to choose an acceptable contour on which partial integration
is permitted.

Thus, by putting @ = 5V, we get

752 % &q aiua:____:QTH
m b«d m-\aa....::adlu

A\ﬂ_‘VH s i ﬂﬂ-ﬂ-&wv

The function (21 + a/n) does not have a maximum at the deterministic steady
state. In fact, it has a minimum at the deterministic steady state # = + (a/2)"/%
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However, in the complex n plane this point is a saddle point and provides the
dominant contribution to the integral.

Thus, the negative diffusion coefficient in (7.7.41) reflects itself by giving rise to a
saddle point at the deterministic steady state, which results in the variance in X
being less than (x).

From (7.7.43) all the steady states moments can be calculated exactly. The
results are

a w :4 I,_,(2(2a)"'*V) (7.7.44)

w="3) | Soaamn

where 1,(2(2a)'/*¥) are the modified Bessel functions. Using the large-argument
expansion for I,(2(2a)"/?V), we get

x> = V(a/2)* + § + 0(1/V)
var{x} =} V(a/2)""* — L + 0(1/V).

(7.7.45)

These asymptotic results can also be obtained by directly applying the method of
steepest descents to (7.7.43). In general, this kind of expansion will always be pos-
sible after explicitly exhibiting the volume dependence of the parameters.

¢) Summary of Advantages

The complex Poisson representation yields stationary solutions in analytic form to
which asymptotic or exact methods are easily applicable. It is not so useful in the
case of time-dependent solutions. The greatest advantages, however, occur in
quantum mechanical systems where similar techniques can be used for complex P
representations which can give information that is not otherwise extractable. These
are treated in Chap. 10.

7.7.4 The Positive Poisson Representation
Here we choose a to be a complex variable a, + ia,,
du(a) = d*a = da,da, , (7.7.46)

and & is the whole complex plane. We show in Sect. 10.6.3 that for any P(x), a
positive fla) exists such that

P(x) = [ d*a (e *a*/x))f(a) ; (1.7.47)

thus, the positive P representation always exists. It is not unique, however. For
example, choose

f(@) = 2ne?)™! exp (— |a — a,|%/20%) (7.7.48)

and note that if g(a) is any analytic function of «, we can write

g(@) = gay) + 3 8 (an)(a — ao)"/n! (7.7.49)

=]
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so that
[ @ro*)"'d*aexp (— |a — ao|*/20%)g(a) = glao) (7.7.50)

since the terms with » > 1 vanish when integrated in (7.7.50). Noting that the
Poisson form e~a*/x! is itself analytic in @, we obtain for any positive value of ¢*

P(x) = [ d*afy(a)e%a*[x! = e~%oaj/x! . (1.7.51)

In practice, this nonuniqueness is an advantage rather than a problem.

a) Fokker-Planck Equations

We make use of the analyticity of the Poisson and its generating function to produce
Fokker-Planck equations with positive diffusion matrices. A FPE of the form of
(7.7.9) arises from a generating function equation

3,G(s, 1) = [d*af(a,1) AM A, %ﬂ p 3 ) m&% exp HMQ.I Dea,). (7.7.52)

ab
We now take explicit account of the fact that & is a complex variable

a=a, +ia, (7.7.53)
and also write

Ala) = A(a) + id,(a) . (7.7.54)
We further write

B(a) = C(a)C(@) (7.7.55)
and

Cla) = Cul(e) + iCy(a) (1.7.56)
For brevity we use

—
°" Oa,
a

- da, ,

d

re da, .

a

o; (7.7.57)

&

Because of the analyticity of exp [37(s. — 1)a,], in the generating function equation

(7.7.52) we can always make the interchangeable choice
0, — 0F & —i0%. (7.7.58)

We then substitute the form (7.7.54) for B,,, and replace @, by either 8% or —id”
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according to whether the corresponding index on 4 or Cis x or y respectively. We
then derive

W.Qﬁh. nv == ._. &_uaﬂ.\.ﬁﬁ. nu :M A.ha..y.mn + \mn“.qmwv
+ w M Aﬁ;n.ﬂxﬁ.nb._kmumﬂ 2 ﬁ.u.o..uﬁn.a"um.umw

|+I Nﬁ‘a.n..kn‘n_?.u._mnm_““_ Exp ﬁM ﬁ.mﬁ - —WQB:, . A.“«-.H.MWV

Integrating by parts and discarding the surface terms to get a FPE in the variables
(a, a,),

0uf(@, 1) = [~ 52 @ Aaixt 0 Agiy) + § 3 (0395 CarcixCortix
+ m“mw...ﬁ,n.n;nun,a; + wamﬁﬁ.n.n_.kﬁ,ﬁ.&;:\.ﬁﬂ, 3_ . Q.n_—.mOv

In the space of doubled dimensions, this is a FPE with positive semidefinite
diffusion. For, we have for the variable (a,, «,) the drift vector

He) = [4.(a), 4,(a)] (7.7.61)
and the diffusion matrix
H(a) = oL F(@)E () (1.7.62)
(O OF S o o
where
¢ 0
#(a) = c 0 (7.7.63)

so that F(a) is explicitly positive semidefinite.

b) Stochastic Differential Equation (SDE)
Corresponding to the drift and diffusion (7.7.61, 62) we have a stochastic differential
equation

da))  [A@)] . [CAW)
= d 71.7.
de,) ~ L] T | am) {364

where W(1) is a Wiener process of the same dimension as e,. Note that the same
Wiener process occurs in both lines because of the two zero entries %(a) as written
in (7.7.63).

Recombining real and imaginary parts, we find the SDE for the complex
variable a:

da = Aa)dt + C(e)dW(1). (7.7.65)

This is of course, exactly the same SDE which would arise if we used the usual
rules for converting Fokker-Planck equations to stochastic differential equations
directly on the Poisson representation FPE (7.7.9), and ignored the fact that C(a)
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so defined would have complex elements if B was not a positive semidefinite diffu-
sion matrix.

c) Examples of Stochastic Differential Equations in the Complex Plane
We again consider the reactions (sect. 7.7.b)

ka
kg
(7.7.66)

ky
k3

The use of the positive Poisson representation applied to this system yields the
SDE, arising from the FPE (7.7.16):

da = [k;C + (kA — kyB)a — kea?)dt +[2(k,Aa — ka?)]'2dW(1). (1.7.67)

In the case 6 > 0, we note that the noise term vanishes at @ = 0 and at
a = k,A[k,, is positive between these points and the drift term is such as to return
a to the range [0, k,A4/k,] whenever it approaches the end points. Thus, for § > 0,
(7.7.67) represents a real SDE on the real interval [0, k,A/k,].

In the case § < 0, the stationary point lies outside the interval [0, k,4/k,], and
a point initially in this interval will move along this interval governed by (7.7.67)
until it meets the right-hand end, where the noise vanishes and the drift continues to
drive it towards the right. One leavingthe interval, the noise becomes imaginary and
the point will follow a path like that shown in Fig. 7.4 until it eventually reaches
the interval [0, k,A4/k,] again.

The case of & = 0 is not very dissimilar, except that once the point reaches the
right-hand end of the interval [0, k,A4/k,], both drift and diffusion vanish so it re-
mains there from then on.

In the case of the system

B—-X
2X— A, (7.7.68)

Fig. 7.4. Path followed by a point obeying the
stochastic differential equation (7.7.67)

Fig. 7.5. Simulation of the path of a point obeying
the stochastic differential equation (7.7.69) | 2
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the SDE coming from the FPE (7.7.41) is
dnldt = Kk, — 2Kk.n* + 1e(2K,) Y0é&(t) , (7.7.69)
where a = nVande = V12,

The SDE (7.7.69) can be computer simulated and a plot of motion in the com-
plex n plane generated. Figure 7.5 illustrates the behaviour. The point is seen to
remain in the vicinity of Re {a} = (a/2)'/? but to fluctuate mainly in the imaginary
direction on either side, thus giving rise to a negative variance in a.

7.7.5 Time Correlation Functions

The time correlation function of a Poisson variable « is not the same as that for
the variable x. This can be seen, for example, in the case of a reaction X = Y which
gives a Poisson Representation Fokker-Planck equation with no diffusion term.
Hence, the Poisson variable does not fluctuate. We now show what the relationship
is. For clarity, the demonstration is carried out for one variable only.

We define

(a(t)a(s)) = [ du(a)du(a’)adf(a, 1|, )f(, 5) - (7.7.70)
We note that

fla,s|d, s) = §(a — a)
which means that

[ du(a) e=*(a*/x)f(a, s| &', 5) = e™*'a’*|x! (1.7.71)
so that

[ du(@) af(a, t|a',s) = 3 xP(x, t|x', s)e™a’x'[x"!

x, x!
Hence,

a(t)a(s)) = 3 xP(x, t|x', 5) [ du(a’Ya*'*'e™[x')f(d, 5)

x, x!

= S xP(x, t]x, ) | %gﬁ AJ a %& 4 i ?Ené?& fe, s)

x,x!

= aM1 x x'P(x, t|x', s)P(x', 5) (7.7.72)
— [du() fled, s)d’ % ».M&.x.u?. 1]xf, sHa'* e xl) (7.7.73)

We define
la(t)|[a’, 5]y = [ daaf(a, t|d,s) (7.7.74)
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as the mean of a(¢) given the initial condition @’ at s. Then the second term can be
written

— [ du@) 5 e[, DA ) = (o 2 Cal)] L, 1)) (7.7.75)
so we have
x()x(s)y = alt)als)y + ( n %n. {a()|[a, .q_vv . (7.7.76)

Taking into account a many-variable situation and noting that

(x(1)y = <a(t))  always,

we have

i), 7)) = ), @) + (a3 @Dl D) (1.1.77)

This formula explicitly shows the fact that the Poisson representation gives a
process which is closely related to the Birth-Death Master equation, but not
isomorphic to it. The stochastic quantities of interest, such as time correlation
functions, can all be calculated bugare not given directly by those of the Poisson
variable.

a) Interpretation in Terms of Statistical Mechanics

We assume for the moment that the reader is acquainted with the statistical
mechanics of chemical systems. If we consider a system composed of chemically
reacting components 4, B, C, ..., the distribution function in the grand canonical
ensemble is given by

P(D) = exp {B[Q + X mexd]) — E(D))}» (7.1.78)

where [ is an index describing the microscopic state of the system, x,(I) is the
number of molecules of X, in the state I, E(I) is the energy of the state, g, is the
chemical potential of component X, 2 is a normalization factor, and

B = 1/kT. (7.1.79)

The fact that the components can react requires certain relationships between the
chemical potentials to be satisfied, since a state J can be transformed into a state
J only if

Svix(D) = Dvix(J), A=123,.. (7.7.80)
i i

where v are certain integers. The relations (7.7.80) are the stoichiometric con-
straints.
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The canonical ensemble for a reacting system is defined by requiring

Svix(l) =1, (7.7.81)
i
for some 74, whereas the grand canonical ensemble is defined by requiring

2P ZvixdD) = Zvikxy =4, (7.7.82)

Maximization of entropy subject to the constraint (7.7.82) (and the usual con-
straints of fixed total probability and mean energy) gives the grand canonical
form (7.7.78) in which the chemical potentials also satisfy the relation

= kot (1.1.83)
A

When one takes the ideal solution or ideal gas limit, in which interaction ener-
gies (but not kinetic or internal energies) are neglected, there is no difference
between the distribution function for an ideal reacting system and an ideal nonre-
acting system, apart from the requirement that the chemical potentials be ex-
pressible in the form of (7.7.83).

The canonical ensemble is not so simple, since the constraints must appear ex-
plicitly as a factor of the form

11 33 vix (D), ] (7.7.84)

and the distribution function is qualitatively different for every kind of reacting
system (including a nonreacting system as a special case).

The distribution in total numbers x of molecules of reacting components in the
grand canonical ensemble of an ideal reacting system is easily evaluated, namely,

P(x) = exp [A(2 + 35 ux)) 35 11 8(x(1), x.] exp [—BEW)] - (7.7.85)

The sum over states is the same as that for the canonical ensemble of an ideal non-
reacting mixture so that

P(x) = exp [B@ + X ] TT 1 (32 exp [ BED (1.7.36)

!

where E,(i) are the energy eigenstates of a single molecule of the substance 4. This
result is a multivariate Poisson with mean numbers given by

log(xy = fui — log [ e85 00) (7.7.87)

which, as is well known, when combined with the requirement (7.7.82) gives the
law of mass action.
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The canonical ensemble is obtained by maximizing entropy subject to the
stronger constraint (7.7.81), which implies the weak constraint (7.7.82). Thus,
the distribution function in total numbers for the canonical ensemble will simply
be given by

1
Px) oc |IT 3 LR g M“ 3[2 vix,, ). (7.7.88)
P Xl i

In terms of the Poisson representation, we have just shown that in equilibrium

situations, the quasiprobability (in a grand canonical ensemble) is

fla),, = d[e — a(eq)] (7.7.89)

since the x space distribution is Poissonian. For the time correlation functions there
are two results of this.

i) The variables a(f) and a(s) are nonfluctuating quantities with values a(eq). Thus,

(a (1), a(s))eq=0. (7.7.90)

ii) The equilibrium mean in the second term is trivial. Thus,

(xa(1), x4(5)) = TM % (a (D) ]|[e’, ,ﬂi (7.7.91)
b alma(eq) *
This result is, in fact, exactly thatéof Bernard and Callen [7.11] which relates a two-
time correlation function to a derivative of the mean of a quantity with respect to
a thermodynamically conjugate variable.

Consider a system in which the numbers of molecules of chemical species X,
X, ... corresponding to a configuration I of the system are x,(I), x,(/). ... and it is
understood that these chemical species may react with each other. Then in a grand
canonical ensemble, as demonstrated above, the equilibrium distribution function is

Z7Y(w) exp [{3 puxdD) — E(D} [KT] (7.7.92)
with
Z(p) = exp (—R2p), (7.7.93)

where Z(u) is the grand canonical partition function. As pointed out above, the

chemical potentials g, for a reacting system cannot be chosen arbitrarily but must

be related by the stoichiometric constraints (7.7.82) of the allowable reactions.
Now we further define the quantities

oot s]) (1.7.94)

to be the mean values of the quantities x; at time ¢ under the condition that the
system was in a configuration I at time 5. Then a quantity of interest is the mean
value of (7.7.94) over the distribution (7.7.92) of initial conditions, namely,
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ety sD = 20 <xi 1, sDDZ7(w)

i

X exp W.HM wx,(J) — EW];- (7.7.95)

When the chemical potentials satisfy the equilibrium constraints, this quantity will
be time independent and equal to the mean of x; in equilibrium, but otherwise it will
have a time dependence. Then, with a little manipulation one finds that

(k72 ot D] = Gl 56D (1.9

oy, = pleq)

The left-hand side is a reponse function of the mean value to the change in the
chemical potentials around equilibrium and is thus a measure of dissipation, while
the right-hand side, the two-time correlation function in equilibrum, is a measure
of fluctuations.

To make contact with the Poisson representation result (7.7.91) we note that the
chemical potentials y; in ideal solution theory are given by

u({x)) = kT log {x,;> + const . (7.7.97)
Using (7.7.97), we find that (7.7.96) becomes

d
9{x»

(xop | [M(<x)), hi : (7.7.98)

G0, 30 =<0

X =(Xgq
Since the ideal solution theory gives rise to a distribution in x, that is Poissonian, it
follows that in that limit

e t[1(CX)), 51 = La, t] [, s]) (7.7.99)
with o' = {x). Thus, (7.7.98) becomes

9
3a

Gl %0 = [ 3 Gl D] (7.7.100)

al=a(eq)

Thus, (7.7.91) is the ideal solution limit of the general result (7.7.98).

The general formula (7.7.77) can be considered as a generalization of the Bern-
ard-Callen result to systems that are not in thermodynamic equilibrium.

However, it is considerably different from the equilibrium result and the
two terms are directly interpretable. The second term is the equilibrium contribu-
tion, a response function, but since the system is not in a well-defined equilibrium
state, we take the average of the equilibrium result over the various contributing &
space states. The first term is the contribution from the a-space fluctuations them-
selves and is not directly related to a response function. It represents the fluctuations
in excess of equilibrium.
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b) Linearised Results
The general differential equation, arising from the use of the positive Poisson
representation, and corresponding to the FPE (7.7.12), is

dn = A(n)dt + eCn)dW(1) (7.7.101)
where
CCr=18. (7.7.102)

We may now make a first-order small noise expansion about the stationary state
n by following the procedure of Sect.6.3. Thus, writing

n(t) =7 +em() (e=V"? (7.7.103)

to lowest order we have

A =0 (7.7.104)

dny = —Fndt + G dW(t)
where

g e

mu.: = mww_- Lwﬁw_: A._.‘-..w. mch

¢ =€) .
Then,

(a.(1), a,(0)), = wWJ.. [exp (—F1)],er {fer,1s Ma1Ds (7.7.106)
and

%I& (a ()|, O) = mM ﬁ Aen(®)[[13, 01> = [exp (—F1)),,, - (7.7.107)
Hence,

Cx (1), x,(0))s = —\vm lexp (—FOL,[{ferrs Maa) s + 6,0,477) (7.7.108)

= M___ exp Alﬁﬂv?nsAN: anu . ﬁﬂ.ﬂﬁ—%v

Thus the linearised result is in agreement with the regression theorem of sect. 3.7.4
correlation functions for a variety of systems nave been computed in [7.10].

7.7.6 Trimolecular Reaction
In Sect. 7.1.3 we considered a reaction which included a part

A+2X==3X (7.7.110)
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and set up an appropriate birth-death Master equation for this. However, it is well
known in chemistry that such trimolecular steps are of vanishingly small probability
and proceed in stages via a short-lived intermediate. Thus, the reaction (7.7.110)
presumably occurs as a two-state system

|
) A+ VXt Y (1.7.111a)
iy + 2, (1.7.111b)

both of which are merely bimolecular, and we have set rate constants equal to one,
except for y (the decdy constant of ¥) which is assumed as being very large. Thus,
Y is indeed a short-lived intermediate. The deterministic rate equations are

d.

a.lw =ay — xy + 2yy — x?)

) (7.7.112)
§ R,

o=

and the usual deterministic adiabatic elimination procedure sets y = x?[y and gives

dx

7 = (ax® — X[y . (7.7.113)

Although this procedure is straightfoward deterministically, it is not clear that
the stochastic Master equation of the kind used in Sect.7.1.3 is a valid adiabatic eli-
mination limit. The adiabatic elimination techniques used in Chap. 6 are not easily
adapted to direct use on a Master equation but can be straightfowardly adapted
to the case of the Poisson representation Fokker-Planck equation.

a) Fokker-Planck Equation for Trimolecular Reaction

For the reaction (7.7.110) with forward and backward rate constants equal to 1/y
to correspond to (7.7.113), the Poisson representation Fokker-Planck equation
becomes, from (7.7.4),

l__ 9
da?

25— ?na — )] x_ (1.7.118)
and contains third-order derivatives. There is no truly probabilistic interpretation
in terms of any real stochastic process in e space, no matter what kind of Poisson
representation is chosen. The concept of third-order noise will be explained in the

next section, which will show how probabilistic methods and stochastic differential
equations can still be used.

b) Adiabatic Elimination
Using the rules developed in (7.4.9), the Fokker-Planck equation for the system
(7.7.111) with the correspondence
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X a

¥ B

=~ aela— @B+ 208 — D+ Z08 — )
(7.7.115)

mM 2

Adiabatic elimination now proceeds as in Sect.6.6.1. We define new variables

X=a
7.7.116
== ( ;
and consequently, changing variables with
9_9_, 0
il ay (1.7.117)
8 .
g~ Tay’
the FPE becomes
-
mhu y) _ _ Allmx :An Xy + x*) +~L+ u.%w
o 4 Y (7.7.118)

+ (- 25) (G~ 25)r + (i~ 2:35) ()0 + 29— ) 1

Since y is to be eliminated, there should be a well-defined limit of the L, operator
which governs its motion at fixed x. However, this operator is

]
Ya5) T &m Heﬂ y — 2x(y + x*)a — x)] (7.7.119)

and the large y limit turns this into deterministic motion. Setting
y=wy (7.7.120)

transforms( 7.7.119) to
L) =7 |50 + S22 — @) + (45° — 220y )

2
= v+ g 20 — o
=9L,. (7.7.121)
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With this substitution, we finally identify

i
y 'Ly = —y! Ep [x*a — x)] (7.7.122)
Ly(y) = Rn — x)uy~? 4 2up~12) — ka,mmle P wkmﬂ.mmﬂe

T I R e (7.7.123)
ax? ax v o
and
T L+ L) + AL/ (1.7.124)

The projection operator P will be onto the null space of L, and because L, depends
on x, we have

L.P + PL,. (1.7.125)

This means that the equation of motion for Pf = g is found by similar algebra to
that used in Sect. 6.5.4. We find

s8(s) = y7'PLyg(s) + P[Ly(y) + y~'Lslls — yLi— (1—P)Ly(y)—y~'(1 — P)L,] !
X [La(y) + ¥~ (1 — P)L3]2(s) + £(0) . (7.7.126)
Notice, however, since for any function of v
Pg(v) = po(v) [ dv g(v) (7.7.127)
where p,(v) satisfies
Lip(v)=0, (7.7.128)

that in PL,(y), all terms with d/dv in them vanish. Thus, to highest order in y,

9 j (7.7.129)

PLy(y) = y7'/? A Na.' mHu

The term [ ]7! in(7.7.126) is asymptotic to —y~'L;! and the only term in the re-
maining bracket which can make the whole expression of order y™', like the L,
term, is the term of order "% in Ly(y), i.e.,

:_» % l(a — HVHJ 5= (7.7.130)

Thus, the large y limit of (7.7.126) is
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-1 o - 2
sg(s) =y Tuhuw — P ﬁ mk + m»L vli? ix Ta — X)x mew_ p(v)pt + g(0)
(7.7.131)
where we have written
g=pp, Z=p.(V)p. (7.7.132)
We are now lead to the central problem of the evaluation of
[ dv'v'L7! 2 (@ — x)x* == p(v") (7.7.133)
' oox mea v o

which arises in the evaluation of the second part in the braces in (7.7.131). We wish
to bring the d/dx to the left outside the integral, but since d/dx and L, do not com-
mute, this requires care. Now

3
(Lt 2] =o' ] 2" (17134
and from (7.7.121),
o nly-1.
(8" — 6ax _T_ ; (1.7.135)
3

(7.7.133) = %\ﬂ [ dv'v'Li*(a — hmmwﬁé
mu

+ [ dv'v'L}! Fo2

L' [(8x* — 6ax*)(a — thJ 30 P2 . (7.7.136)
The second term vanishes, through the demonstration that this is so is rather speci-
alised. For, we know that L, describes an Ornstein-Uhlenbeck process in » and that

Pp«(v) is its stationary solution. The eigenfunction properties used in Sect.6.4.2 show
that

2
L %%h : m.w o (1.7.137)

is proportional to the third eigenfunction, which is orthogonal to », the first eigen-
function of the corresponding backward equation. The first term is now easily
computed using the fact that L, involves the Ornstein-Uhlenbeck process. Using the
same techniques as in Sect.6.6.1, we find that all the x dependence arising from
p=(v) vanishes, and hence

a

(17.133) = 5 (@ — x)x*. (7.7.138)

We similarly find
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PLg = —p) [ dv' - [x(a — Dlp P
= —p) b @ — 21D, (7.7.139)
so in the end

ap 1 a 3 3
a7y Z| axt 258 5plle— avmi (7.7.140)

which is exactly the same as the trimolecular model Fokker-Planck equation
(7.7.114). This means the trimolecular Master equation is valid in the same limit.

¢) Comments

i) Notice that this system gives an end result which is not in a Stratonovich form
but in the Ito form, with all derivatives to the left.

ii) The derivation of (7.7.140) means that techniques for understanding such non-
probabilistic Fokker-Planck equations are required. We outline a possible way
of doing this in the next section.

7.7.7 Third-Order Noise

To handle the third-order Fokker-Planck equations which arise with trimolecular
reactions, we introduce the stochastic variable V(r) whose conditional probability
density p(v, t) obeys the third-order partial differential equation

ap(v, )at = — L 3p(v, 1)[dv? . (7.7.141)

Since we have already shown in Sect.3.4 that no Markov process can possible give
a third-order term like this, some fundamental requirement must be violated by
p(v, t). It turns out that p(v, 1) is not always positive, which is permissible in a quasi-
probability. We will see that in spite of this, the formal probabilistic analogy is
very useful.

We know that the solution of (7.7.141), subject to the boundary condition

PO, 1) = 8(v — ,) (7.7.142)
is given by Fourier transform methods as

P, 1], t0) = (1/2m) | dgexp{ilg(v — v)) + & 9t — 1)) (7.7.143)

The moments of ¥ can be calculated, after a partial integration, to be

V(1) — Vo] =0, n not a multiple of 3
V() — Vo™ = [(2 — 1)/6]"(3m)!m! . (7.7.144)
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Further, we assume the process (7.7.141) is some kind of generalized Markov
process, for which the joint probability distribution is given by

p(vaty: uty) = p(vaty|vit)p(vy, 1)) (7.7.145)

and from (7.7.142) we see that the first factor is a function of only v, — », and
t, — t, so that the variable ¥(r;) — V(¢,) is statistically independent of F(¢,) and
that this process is a process with independent increments. Thus, dV(t) will be
independent of F(r).

The rigorous definition of stochastic integration with respect to F(f) is a task
that we shall not attempt at this stage. However, it is clear that it will not be too
dissimilar to Ito integration and, in fact, Hochberg [7.12] has rigorously defined
higher-order noises of even degree and carried out stochastic integration with
respect to them. We can show, however, that a stochastic differential equation of
the form

dy(t) = a(y)dt + b(y)dW(1) + c(y)dV (1) (7.7.146)

[with W(r) and V(1) independent processes] is equivalent to a third-order Fokker-
Planck equation. It is clear that because W(r) and V(r) are processes with inde-
pendent increments, y(¢) is a Markov process. We then calculate

M) — ¥l _

- _ i AL

=1y t— ma deg=0 &.no *

(7.7.147)

where y(t,) is a numerical initial value, not a stochastic variable. From (7.7.146),
»(t) depends on W(t") and V(¢') for only t’ < r and, since dW(t) and d¥(¢) are inde-
pendent of y(t), we find

dy(te)y = (al (1) dts + Byt AW (1)) + ([ ¥(2)]> {dV(1o))
= (aly(to))dto = a[y(t,)dto (7.7.148)

because y(1,) is a numerical initial value. Similarly, to lowest order in dt,

dy(te)?y = Blp(1))* (AW (2,)?)

= B[y(to)]3dto (7.7.149)
dy(to)’) = e[yt (dV(10)*>
= c[p(to)Pdto - (7.7.150)

Thus, we find

lim [<y(1) — ¥t [(t — 10)] = a[¥(1o)]

lim [{[y(t) — p(to))/(t — 1o)] = BIy(1o)] (7.7.151)

L 1}

lim [{Ip(2) — p(t)/(t — 15)] = c[y()P
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and all higher powers give a zero result. By utilising a similar analysis to that of
Sect.3.4, this is sufficient to show that y(r) is a generalized diffusion process whose
generalized FPE is

DL — — 2 1a)p] + 5 2 BOYP) — Y. (17.15)

We define a noise source {(t) by

dv(r) = {(t)dt, (7.7.153)
where ’

K@) = L0y =0 (7.7.154)

LDy = 8(t — 1)3(1" — 1) (7.7.155)

and higher moments can be readily calculated from the moments of dV(t). The
independence of increments means that, as with the Ito integral, integrals that
have a delta-function singularity at their upper limit are to be taken as zero.

Example of the Use of Third-Order Noise. Consider the chemical process

k
A+ 2X = 3X (1.7.156)
k2

k3

A=—X
ky

whose Poisson representation FPE is

Lerl) — — ZlaV e — V@ + 0V — ki), 1)
3 V0 = Ve )
- %4%% [6(rc, V' — i,V ) fla, )], (7.7.157)

where i V' = kA, i,V i=k, KV=k, kq=k,.

In the steady state, (7.7.157) reduces to a linear second-order differential equa-
tion which may be solved in terms of hypergeometric functions, and an asymptotic
expansion for the various moments can be obtained using steepest descent methods.
This procedure, although possible in principle, is not very practicable. It is in such
cases that the method of stochastic differential equations proves to be very useful
because of its ease of application.
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The stochastic differential equation equivalent to (7.7.157) is

dn(t)/dt = xn(t)* — k(1) + K3 — Ka(t)
+ 2 {dlxin(1)* — rean(1)’]}112E(r)
+ pt {6l () — ram(e)1}20(e) (7.7.158)
where @ = n¥, g = V="' and the noise source {(t), henceforth referred to as the

“third-order noise”, has been defined in (7.7.153-155)
Equation (7.7.158) may be solved iteratively by expanding »(r):

n(t) = no(t) + 1£2n:(t) + wina(t) + ons(t) + 1Png(t) + ono(t) + ... (7.7.159)

which, when substituted in (7.7.158), yields the deterministic equation in the lowest
order and linear stochastic differential equations in the higher orders which may
be solved as in Sect.6.2.

In the stationary state the results are

2ab
O = Vilo + 1y + = Vit + =5 + ... (7.7.160a)

X — & = V) + 2400 + 2{nene) + 3> — nep? + {ne)] + ...
_ pf2a 28 a’h* | 8ab™, N 36x,a®
2]+ =

+thJ+ . (1.7.160b)

¢ 3 oM i i c
{x — P> = VI — 3 ney + 3n> + (o) + -
- Amﬂa = ﬁmﬂu 4 QL L (7.7.160c)

where a = g — Ko, b = 2, — 3Katg, € = Ko — 2K, + 3K,n% and n, is the
solution of the steady-state deterministic equation

Kyg — Kty + K3 — Katlo = 0. (7.7.161)

Here a few remarks are in order. The third-order noise {(#) contributes to O(V~") to
the mean and to O(1) to the variance, but contributes to O(V) to the skewness
coefficient. If one is only interested in calculating the mean and the variance
to O(¥), the third-order noise may be dropped from (7.7158) and the expansiou
carried out in powers of e = ¥ ~!/2, Also note that as ¢ — 0, the variance and the
higher order corrections become divergent. This of, course, is due to the fact that in
this limit, the reaction system exhibits a first-order phase transition type behaviour.




8. Spatially Distributed Systems

Reaction diffusion systems are treated in this chapter as a prototype of the host
of spatially distributed systems that occur in nature. We introduce the subject
heuristically by means of spatially dependent Langevin equations, whose inade-
quacies are explained. The more satisfactory multivariate master equation descrip-
tion is then introduced, and the spatially dependent Langevin equations formulated
as an approximation to this description, based upon a system size expansion. It is
also shown how Poisson representation methods can give very similar spatially
dependent Langevin equations without requiring any approximation.

We next investigate the consequences of such equations in the spatial and
temporal correlation structures which can arise, especially near instability points.
The connection between local and global descriptions is then shown. The chapter
concludes with a treatment of systems described by a distribution in phase space
(i.e. the space of velocity and position). This is done by means of the Boltzmann
Master equation.

8.1 Background

The concept of space is central to our perception of the world, primarily because
well-separated objects do not, in general, have a great deal of influence on each
other. This leads to the description of the world, on a macroscopic deterministic
level, by local quantities such as local density, concentration, temperature, electro-
magnetic potentials, and so on. Deterministically, these are normally thought of as
obeying partial differential equations such as the Navier-Stokes equations of
hydrodynamics, the reaction diffusion equations of chemistry or Maxwell's equa-
tions of classical electromagnetism.

The simplest cases to consider are reaction diffusion equations, which describe
chemical reactions and which form the main topic of this chapter. In order to get
some feel of the concept, let us first consider a Langevin equation description for
the time evolution of the concentration p of a chemical substance. Then the
classical reaction-diffusion equation can be derived as follows. A diffusion current
J(r, t) exists such that

jr,t) = —DF p(r, t) (8.1.1)

and (8.1.1) is called Fick’s law. If there is no chemical reaction, this current obeys
a conservation equation. For, considering an arbitrary volume V, the total amount
of chemical in this volume can only change because of transport across the bound-
ary S, of V. Thus, if N is the total amount in V,




